zoukankan      html  css  js  c++  java
  • HDU-1506-Largest Rectangle in a Histogram(单调栈)

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles: 
     
    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

    Input

    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

    Output

    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

    Sample Input

    7 2 1 4 5 1 3 3
    4 1000 1000 1000 1000
    0

    Sample Output

    8
    4000

    题解:

    利用单调栈,可以找到从左/右遍历第一个比它小/大的元素的位置

    这个题需要向左和向右遍历两次,如果暴力的话是要超的,所以可以利用单调栈把复杂度降到O(n)

    注意每次用前先把栈清空,不然会因为之前的数据对当前造成影响

    代码:

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<stack>
    
    using namespace std;
    
    int main() {
    	int n;
    	stack<int>s;
    	long long int a[100005];
    	long long int L[100005];
    	long long int R[100005];
    	while(~scanf("%d",&n)&&n) {
    		for(int t=0; t<n; t++) {
    			scanf("%I64d",&a[t]);
    		}
    		while(s.size()) s.pop();//清空栈 
    		for(int t=0; t<n; t++) {
    			while(s.size()&&a[s.top()]>=a[t]) {
    				s.pop();
    			}
    			if(s.empty())
    				L[t]=0;
    			else
    				L[t]=s.top()+1;
    			s.push(t);
    		}
    		while(s.size()) s.pop();//清空栈
    		for(int t=n-1; t>=0; t--) {
    			while(s.size()&&a[s.top()]>=a[t]) {
    				s.pop();
    			}
    			if(s.empty())
    				R[t]=n;
    			else {
    				R[t]=s.top();
    			}
    			s.push(t);
    		}
    		long long int maxn=0;
    		for(int t=0; t<n; t++) {
    			maxn=max(maxn,a[t]*(R[t]-L[t]));
    		}
    		printf("%I64d
    ",maxn);
    	}
    	return 0;
    }
  • 相关阅读:
    如何同步共享同一个list
    Java多线程生产者消费者模式(一)之两个线程交替执行
    Java多线程之如何在线程间共享数据
    Java多线程(四)实现多线程的三种方法之JUC的Callable接口
    Java线程的6种状态
    Java lambda表达式的进化论
    Java内部类
    Java多线程(五)锁机制之synchronized 同步方法和同步块
    Java装饰者模式
    Java多线程(三)实现多线程的三种方法之Runnable接口
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/10781980.html
Copyright © 2011-2022 走看看