【题目描述】
给定N个数,求这N个数的最长上升子序列的长度。
【样例输入】
7
2 5 3 4 1 7 6
【样例输出】
4
什么是最长上升子序列? 就是给你一个序列,请你在其中求出一段不断严格上升的部分,它不一定要连续。
就像这样:2,3,4,7和2,3,4,6就是序列2 5 3 4 1 7 6的两种选取方案。最长的长度是4.
什么是最长上升子序列? 就是给你一个序列,请你在其中求出一段不断严格上升的部分,它不一定要连续。
就像这样:2,3,4,7和2,3,4,6就是序列2 5 3 4 1 7 6的两种选取方案。最长的长度是4.
思路:
新建一个low数组,low[i]表示长度为i的LIS结尾元素的最小值。对于一个上升子序列,显然其结尾元素越小,越有利于在后面接其他的元素,也就越可能变得更长。因此,我们只需要维护low数组,对于每一个a[i],如果a[i] > low[当前最长的LIS长度],就把a[i]接到当前最长的LIS后面,即low[++当前最长的LIS长度]=a[i]。
那么,怎么维护low数组呢?
对于每一个a[i],如果a[i]能接到LIS后面,就接上去;否则,就用a[i]取更新low数组。具体方法是,在low数组中找到第一个大于等于a[i]的元素low[j],用a[i]去更新low[j]。如果从头到尾扫一遍low数组的话,时间复杂度仍是O(n^2)。我们注意到low数组内部一定是单调不降的,所有我们可以二分low数组,找出第一个大于等于a[i]的元素。二分一次low数组的时间复杂度的O(lgn),所以总的时间复杂度是O(nlogn)。
代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn =300003,INF=0x7f7f7f7f;
int low[maxn],a[maxn];
int n,ans;
int binary_search(int *a,int r,int x)
//二分查找,返回a数组中第一个>=x的位置
{
int l=1,mid;
while(l<=r)
{
mid=(l+r)>>1;
if(a[mid]<=x)
l=mid+1;
else
r=mid-1;
}
return l;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
low[i]=INF;//由于low中存的是最小值,所以low初始化为INF
}
low[1]=a[1];
ans=1;//初始时LIS长度为1
for(int i=2;i<=n;i++)
{
if(a[i]>=low[ans])//若a[i]>=low[ans],直接把a[i]接到后面
low[++ans]=a[i];
else //否则,找到low中第一个>=a[i]的位置low[j],用a[i]更新low[j]
low[binary_search(low,ans,a[i])]=a[i];
}
printf("%d
",ans);//输出答案
return 0;
}