We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6 6 4 0 6
代码:
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<queue> #include<stack> #include<map> #include<set> #include<vector> #include<cmath> const int maxn=1e5+5; typedef long long ll; using namespace std; string str; int dp[105][105]; int main() { while(cin>>str) { if(str=="end") { break; } else { int n=str.length(); for(int t=0;t<n;t++) { dp[t][t]=0; } for(int t=0;t<n-1;t++) { if((str[t]=='['&&str[t+1]==']')||(str[t]=='('&&str[t+1]==')')) { dp[t][t+1]=2; } else { dp[t][t+1]=0; } } for(int r=3;r<=n;r++) { for(int i=0;i<n;i++) { int j=i+r-1; if(j>n) break; if((str[i]=='['&&str[j]==']')||(str[i]=='('&&str[j]==')')) { dp[i][j]=dp[i+1][j-1]+2; } else dp[i][j]=0; for(int k=i;k<j;k++) { dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]); } } } printf("%d ",dp[0][n-1]); } } return 0; }