传送门啦
下面来看任务B。我们发现,图中只要存在入度为0的点和出度为0的点就永远不可能满足要求:“ 不论我们给哪个学校发送新软件,它都会到达其余所有的学校 ”。我们还发现,只要在入度为0的点和出度为0 的点之间连一条边,就可以同时消灭两个“不合法”的点。如果不能做到刚好两两配对(不妨假设入度为0的点多),就给每个多出来的入度为0的点随便找一个出度为0的点配对(也就是说一个点可以同时配多个点)。因此,入度为0的点数与出度为0的点数的较大值即为任务B的答案。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 10005;
const int maxm = 5e6 + 6;
int read(){
char ch = getchar();
int f = 1 , x = 0;
while(ch > '9' || ch < '0'){
if(ch == '-') f = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9'){
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
}
int n,m,s;
int head[maxn],tot;
int dfn[maxn],low[maxn],ind;
int stack[maxn],top,num[maxn],belong[maxn],cnt;
bool ins[maxn];
int in[maxn],chu[maxn],ans1,ans2;
struct Edge{
int from,to,next;
}edge[maxm];
void add(int u , int v){
edge[++tot].from = u;
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot;
}
void tarjan(int x){
low[x] = dfn[x] = ++ind;
ins[x] = true;
stack[++top] = x;
for(int i=head[x];i;i=edge[i].next){
int v = edge[i].to;
if(ins[v]) low[x] = min(low[x] , dfn[v]);
if(!dfn[v]) {
tarjan(v);
low[x] = min(low[x] , low[v]);
}
}
int k = 0;
if(dfn[x] == low[x]){
cnt++;
do{
k = stack[top];
num[cnt]++;
top--;
ins[k] = false;
belong[k] = cnt;
} while(k != x);
}
}
int main(){
n = read();
for(int i=1;i<=n;i++){
while((s = read()) != 0){
m++;
add(i , s);
}
}
//printf("%d
",m);
for(int i=1;i<=n;i++)
if(!dfn[i]) tarjan(i);
for(int i=1;i<=m;i++)
if(belong[edge[i].from] != belong[edge[i].to]){
in[belong[edge[i].to]]++;
chu[belong[edge[i].from]]++;
}
if(cnt == 1){
printf("1
0
");
return 0;
}
else{
for(int i=1;i<=cnt;i++){
if(in[i] == 0) ans1++;
if(chu[i] == 0) ans2++;
}
printf("%d
%d",ans1,max(ans1 , ans2));
return 0;
}
}
/*
10
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
1 0
*/