1 package main 2 3 import ( 4 "fmt" 5 ) 6 7 //计算矩阵链乘所需最少乘法运算数 8 func matrixChain(chain []int) int { 9 length := len(chain) - 1 //矩阵个数 10 matrix := make([][]int, length) //用来存储第i至第j个矩阵链乘所需乘法运算最少数 11 var i, j, k, m, n, temp, min int 12 for i = 0; i < length; i++ { //创建length*length矩阵 13 matrix[i] = make([]int, length) 14 matrix[i][i] = 0 //矩阵对角线为0,方便矩阵第二条对角线的上的元素的运算 15 } 16 for i = 1; i < length; i++ { //循环对角线数次 17 m = length - i 18 for j = 0; j < m; j++ { //对角线长度 19 min = -1 20 n = i + j 21 for k = j; k < n; k++ { //从标准中对角线至该对角线距离 22 temp = matrix[j][k] + matrix[k+1][n] + chain[j]*chain[k+1]*chain[n+1] //任意两个矩阵相乘需要对应chain数组上的数目(及该矩阵的行数)和第二个矩阵的列数(存储在该矩阵对应的chain元素的下一个元素值) 23 if temp < min || min == -1 { 24 min = temp 25 } 26 } 27 matrix[j][n] = min 28 } 29 } 30 31 for i = 0; i < length; i++ { 32 for j = i; j < length; j++ { 33 fmt.Print(matrix[i][j], " ") 34 } 35 fmt.Println("") 36 } 37 return matrix[0][length-1] 38 } 39 40 func main() { 41 array := []int{5, 10, 4, 6, 10, 2} 42 matrixChain(array) 43 }