描述
http://poj.org/problem?id=3685
一个n*n的矩阵,(i,j)的值为i*i+100000*i+j*j-100000*j+i*j,求第m小的值.
Time Limit: 6000MS | Memory Limit: 65536K | |
Total Submissions: 5980 | Accepted: 1700 |
Description
Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that equals i2 + 100000 × i + j2 - 100000 × j + i × j, you are to find the M-th smallest element in the matrix.
Input
The first line of input is the number of test case.
For each test case there is only one line contains two integers, N(1 ≤ N ≤ 50,000) and M(1 ≤ M ≤ N × N). There is a blank line before each test case.
Output
For each test case output the answer on a single line.
Sample Input
12 1 1 2 1 2 2 2 3 2 4 3 1 3 2 3 8 3 9 5 1 5 25 5 10
Sample Output
3 -99993 3 12 100007 -199987 -99993 100019 200013 -399969 400031 -99939
Source
分析
与POJ_3579很像.假定一个第m小的值x,如果<=x的值<m,那么x偏小.在统计<=x的值的时候还要用到二分,对于一个确定的j,值是关于i单增的,枚举j,二分查找使得值<=x的最大的i.
注意:
1.第一层二分的边界:最大值是i,j取n,去掉负值;最小值是i,j取n,去掉正值.
2.第二层二分统计个数时,i在(1,n)内不一定存在使得值<=x的,所以二分范围不能是(1.n).如x=-1,n=1,如果在(1,n)内,值只有3,这样最后l=r=1,表示有一个<=x的值,其实一个都没有,所以应该在(0,n)内二分,而这里因为写成了m=l+(r-l+1)/2,有一个"+1",所以(r-l+1)/2>=1,m>=1,所以不必担心会去到0,如果不是这样,在val函数中应加一条:if(i==0) return -100000*n;也就是给0的情况一个最小值,如果有n+1,应赋最大值.也就是假设了左右两个端点,最后如果落在这两个实际不存在的点上,那么就是没有答案.
3.数据范围.整型上限大概2*10^9,这道题极限情况1.75*10^10,必须用long long.检查的时候还是要耐心.

1 #include<cstdio> 2 #define ll long long 3 4 ll q,n,m; 5 6 ll val(ll i,ll j){ return i*i+100000*i+j*j-100000*j+i*j; } 7 8 ll bsearch(ll j,ll x) 9 { 10 ll l=0,r=n; 11 while(l<r) 12 { 13 ll m=l+(r-l+1)/2; 14 if(val(m,j)<=x) l=m; 15 else r=m-1; 16 } 17 return l; 18 } 19 20 bool C(ll x) 21 { 22 ll cnt=0; 23 for(ll j=1;j<=n;j++) cnt+=bsearch(j,x); 24 return cnt<m; 25 } 26 27 void solve() 28 { 29 ll l=-100000*n,r=3*n*n+100000*n; 30 while(l<r) 31 { 32 ll mid=l+(r-l)/2; 33 if(C(mid)) l=mid+1; 34 else r=mid; 35 } 36 printf("%lld ",l); 37 } 38 39 void init() 40 { 41 scanf("%lld",&q); 42 while(q--) 43 { 44 scanf("%lld%lld",&n,&m); 45 solve(); 46 } 47 } 48 49 int main() 50 { 51 freopen("matrix.in","r",stdin); 52 freopen("matrix.out","w",stdout); 53 init(); 54 fclose(stdin); 55 fclose(stdout); 56 return 0; 57 }