zoukankan      html  css  js  c++  java
  • UVALive 7334 Kernel Knights (dfs)

    Kernel Knights

    题目链接:

    http://acm.hust.edu.cn/vjudge/contest/127407#problem/K

    Description

    Jousting is a medieval contest that involves people on horseback trying to strike each other with wooden lances while riding at high speed. A total of 2n knights have entered a jousting tournament — n knights from each of the two great rival houses. Upon arrival, each knight has challenged a single knight from the other house to a duel. A kernel is defined as some subset S of knights with the following two properties: • No knight in S was challenged by another knight in S. • Every knight not in S was challenged by some knight in S. Given the set of the challenges issued, find one kernel. It is guaranteed that a kernel always exists.

    Input

    The input file contains several test cases, each of them as described below. The first line contains an integer n (1 ≤ n ≤ 100000) — the number of knights of each house. The knights from the first house are denoted with integers 1 through n, knights from the second house with integers n + 1 through 2n. The following line contains integers f1, f2, . . ., fn — the k-th integer fk is the index of the knight challenged by knight k (n + 1 ≤ fk ≤ 2n). The following line contains integers s1, s2 , . . ., sn — the k-th integer sk is the index of the knight challenged by knight n + k (1 ≤ sk ≤ n).

    Output

    For each case, output the indices of the knights in the kernel on a single line. If there is more than one solution, you may output any one.

    Sample Input

    4 5 6 7 7 1 3 2 3

    Sample Output

    1 2 4 8
    ##题意: 有两队骑士各n人,每位骑士会挑战对方队伍的某一个位骑士. (可能相同) 要求找出一个集合S,使得:(任意满足条件即可) 集合S中的骑士不会互相挑战. 每个集合外的骑士必定会被集合S内的某个骑士挑战.
    ##题解: 一开始看题有点懵比,题目的两层要求绕得有点糊涂. 在模拟样例的过程中发现,有些点是必须在S中的,而有些必须在S外,有些是不固定的. 首先,如果某个骑士没有被人挑战,那么他一定要位于S中. (反之他在集合外的话,就违背了条件2). 然后,如果某个骑士被确定在S中时,那么他的挑战对象一定要在S外. (反之违背条件1). 若某个骑士i被多个人挑战,那么要先对这些挑战者逐一进行上述判断,若某个挑战者被确定在S外,那么说明能使骑士i满足条件2的挑战者少了一个(等同于少了一个挑战者). 若所有挑战者都在S外,那么i一定在S内.
    一开始觉得上述条件不够充分,特别是存在多个挑战者时,考虑会不会存在某个挑战者无法确定而导致i确定不了. 考虑无法确定的情况: 首先一定是成对出现,若只出现一个,那么由上述判据一定能够确定它. 比如样例中的1<->5(互相挑战),上述判据就无法确定. 这时候可以推断1和5只要任意一个在集合S内都满足情况.
    直接用dfs或bfs搜状态即可,从入度为0的点开始,若某点的父结点被确定在S外,则将该点的入度减少1.

    ##代码: ``` cpp #include #include #include #include #include #include #include #include #include #include #define LL long long #define eps 1e-8 #define maxn 201000 #define mod 100000007 #define inf 0x3f3f3f3f #define mid(a,b) ((a+b)>>1) #define IN freopen("in.txt","r",stdin); using namespace std;

    int reach[maxn];
    int mp[maxn];
    bool vis[maxn];
    int ans[maxn];

    void dfs(int cur) {
    vis[cur] = 1;
    if(vis[mp[cur]]) return;
    if(ans[cur] == 1) { // in;
    ans[mp[cur]] = -1;
    dfs(mp[cur]);
    return;
    }

    reach[mp[cur]]--; // out;
    if(!reach[mp[cur]]) {
        ans[mp[cur]] = 1;
        dfs(mp[cur]);
    }
    

    }

    int main(int argc, char const *argv[])
    {
    //IN;

    int n;
    while(scanf("%d", &n) != EOF)
    {
        memset(reach, 0, sizeof(reach));
        for(int i=1; i<=2*n; i++) {
            int x; scanf("%d", &x);
            mp[i] = x;
            reach[x]++;
        }
    
        memset(vis, 0, sizeof(vis));
        memset(ans, 0, sizeof(ans));
        for(int i=1; i<=2*n; i++) {
            if(!vis[i] && !reach[i]) {
                ans[i] = 1;
                dfs(i);
            }
        }
    
        vector<int> p; p.clear();
        for(int i=1; i<=2*n; i++) {
            if(ans[i] == -1) continue;
            if(ans[i] == 1) p.push_back(i);
            else if(i <= n) p.push_back(i);
        }
        int sz = p.size();
        for(int i=0; i<sz; i++) {
            printf("%d%c", p[i], i==sz-1?'
    ':' ');
        }
    }
    
    return 0;
    

    }

  • 相关阅读:
    混合知识点
    源码系列--OkHttp(CallServerInterceptor)
    源码系列--OkHttp(2)
    源码系列--OkHttp
    java代码编译得到smali代码
    C++入门笔记
    Flutter入门(五)--表单+单选/多选+日期+轮播+对话框
    Flutter入门(四)--顶部导航+侧边栏+按钮
    Flutter入门(三)-底部导航+路由
    Flutter入门(二)--布局
  • 原文地址:https://www.cnblogs.com/Sunshine-tcf/p/5758052.html
Copyright © 2011-2022 走看看