zoukankan      html  css  js  c++  java
  • caffe makefile.config anaconda2 python3 所有问题一种解决方式

    我只改了两个数字,然后,所有错误,不翼而飞,两天折腾,全是穷折腾。

    事情是这样的,除了官方说法,其他不带官方doc的教程都是耍流氓。

    有人说,官方说anaconda+python非常简单好配置,为什么,我这么多错误,最后不得不用pip,因为官方配置文档,就是makefile.config里面是anaconda2+python2.7,如果你安装的是以上版本,那你的确很简单,但是旧版本是注定要被淘汰的,你看现在谁用windows xp?

    没有教程,或者没有最新的针对anaconda3+python3.6的,中么办?

    我告诉你,配置的时候只需按照你的anaconda安装包里面的路径,原本的改了那个针对anaconda2的路径即可,所有前置,所有版本,全都给你弄好了,你只要改了比如我的python在anaconda中的

    那我需要把config中的python2.7改成3.6m总之,你既然用了anaconda,你就要精确的告诉你的caffe去哪里找我的库,而不是瞎改,改完了出错,到处去搜索(是我)我看了那么多doc,唯一一块自由发挥,就把自己给坑了(的确看脸,可能最近照镜子有点多)

    最后附上我的config,我这片终极教程,是建立在你看了官网教程的基础上的,配置最后的config时的。另外提醒一句,GPU cudnn要求你的显卡加速在3以上,我的机子不到,而且bantu16.04要求装cuda8.0,我装了9.1。我显然是好奇又傻大胆,在犯错的边缘试探,就爱尝试最新版,等我装回cuda8,再整个GPU版本的。

    请注意cudnn与cuda是不一定一起的,具体看管网,配置的时候说了三种情况。

    另外如果装cudnn那么请注意时差,对面工作时间非常准时,我们只能在早上还有晚上访问观望。其他时间都是维护。我就奇怪了,运维都请不起吗???

    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    # USE_CUDNN := 1
    
    # CPU-only switch (uncomment to build without GPU support).
     CPU_ONLY := 1
    
    # uncomment to disable IO dependencies and corresponding data layers
    # USE_OPENCV := 0
    # USE_LEVELDB := 0
    # USE_LMDB := 0
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #    You should not set this flag if you will be reading LMDBs with any
    #    possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
    
    # Uncomment if you're using OpenCV 3
    # OPENCV_VERSION := 3
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
    # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
    # For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 
            -gencode arch=compute_20,code=sm_21 
            -gencode arch=compute_30,code=sm_30 
            -gencode arch=compute_35,code=sm_35 
            -gencode arch=compute_50,code=sm_50 
            -gencode arch=compute_52,code=sm_52 
            -gencode arch=compute_60,code=sm_60 
            -gencode arch=compute_61,code=sm_61 
            -gencode arch=compute_61,code=compute_61
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := atlas
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    # BLAS_INCLUDE := /path/to/your/blas
    # BLAS_LIB := /path/to/your/blas
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    # MATLAB_DIR := /usr/local
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    #PYTHON_INCLUDE := /usr/include/python3.5 
            /usr/lib/python3.6/dist-packages/numpy/core/include
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
     ANACONDA_HOME := $(HOME)/anaconda3
    
     PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
             $(ANACONDA_HOME)/include/python3.6m 
             $(ANACONDA_HOME)/lib/python3.6/site-packages/numpy/core/include
    
    # Uncomment to use Python 3 (default is Python 2)
     #PYTHON_LIBRARIES := boost_python3 python3.5m
     #PYTHON_INCLUDE := /usr/include/python3.5m 
      #               /usr/lib/python3.5/dist-packages/numpy/core/include
    
    # We need to be able to find libpythonX.X.so or .dylib.
    #PYTHON_LIB := /usr/lib
    
     PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
     WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
    #INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # NCCL acceleration switch (uncomment to build with NCCL)
    # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
    # USE_NCCL := 1
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    
    # enable pretty build (comment to see full commands)
    Q ?= @

    最后,如果有问题欢迎留言,我现在还比较熟悉,你在晚点我就忘了。

    另外,万一火了,问得太多了,我就该高冷了(想太多)

    本博客专注于错误锦集,在作死的边缘试探
  • 相关阅读:
    再战徐州
    hibernate系列1
    linux 下python操作mysql
    java synchronized
    深入ASP.NET MVC之九:Ajax支持
    深入ASP.NET MVC之六:Model Binding的实现
    深入ASP.NET MVC之十:服务器端Model Validation
    深入ASP.NET MVC之四:Filter和Action的执行
    深入ASP.NET MVC之七:ActionResult的执行(View的加载和渲染)
    深入ASP.NET MVC之五:Model Binding
  • 原文地址:https://www.cnblogs.com/SweetBeens/p/8552351.html
Copyright © 2011-2022 走看看