zoukankan      html  css  js  c++  java
  • HDU 3714 Error Curves

    题目链接:

    http://acm.split.hdu.edu.cn/showproblem.php?pid=3714

    Problem Description
    Josephina is a clever girl and addicted to Machine Learning recently. She
    pays much attention to a method called Linear Discriminant Analysis, which
    has many interesting properties.
    In order to test the algorithm's efficiency, she collects many datasets.
    What's more, each data is divided into two parts: training data and test
    data. She gets the parameters of the model on training data and test the
    model on test data. To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.



    It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimum which related to multiple quadric functions. The new function F(x) is defined as follows: F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function. Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
     
    Input
    The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n (n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
     
    Output
    For each test case, output the answer in a line. Round to 4 digits after the decimal point.
     
    Sample Input
    2
    1
    2 0 0
    2
    2 0 0
    2 -4 2
     
    Sample Output
    0.0000
    0.5000
     
    Hint:
    题意:
    一个一元二次的函数,已经给出你函数前面的系数,让你求出这个函数的最大值。
    题解:
    用三分法去做就行了,做的时候要注意该题目的精度要求比较高。自己就wa了一次。
    代码:
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    const int maxn = 500+10;
    #define met(a,b) memset(a,b,sizeof(a))
    int used[maxn],boy[maxn];
    int map[maxn][maxn];
    int k,n,m;
    int find(int x)
    {
        for(int i=1;i<=m;i++)
        {
            if(map[x][i]==true&&used[i]==false)
            {
                used[i]=true;
                if(boy[i]==false||find(boy[i]))
                {
                    boy[i]=x;
                    return true;
                }
            }
        }
        return false;
    }
    int main()
    {
        while(scanf("%d%d%d",&k,&n,&m)!=EOF&&k!=0)
        {
            met(map,0); met(boy,0);
            for(int i=1;i<=k;i++)
            {
                int x,y;
                scanf("%d%d",&x,&y);
                map[x][y]=true;
            }
            int sum=0;
            for(int i=1;i<=n;i++)
            {
                met(used,0);
                if(find(i))
                    sum++;
            }
            printf("%d
    ",sum);
        }
        
    }
    
  • 相关阅读:
    Python基础-字符串方法 、文件操作
    Python基础-列表、字典
    Python基础作业-用户登录
    LeetCode 78. Subsets
    LeetCode 77. Combinations
    LeetCode 76. Minimum Window Substring
    LeetCode 74. Search a 2D Matrix
    LeetCode 73. Set Matrix Zeroes
    LightOJ 1043
    LightOJ 1042
  • 原文地址:https://www.cnblogs.com/TAT1122/p/5856665.html
Copyright © 2011-2022 走看看