zoukankan      html  css  js  c++  java
  • 【算法•日更•第五期】深度优先搜索中的剪枝优化(二)例题:数的划分题解

      上一期我们讲到了剪枝是什么(附前一期链接:戳这里),那么我们今天就来实战模拟一下,废话不多说,直接上题:


    P1025 数的划分

    题目描述

    将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序)。

    例如:n=7k=3,下面三种分法被认为是相同的。

    1,1,5;
    1,5,1;
    5,1,1.

    问有多少种不同的分法。

    输入输出格式

    输入格式:

    n,k(6<n200,2k6)

    输出格式:

    11个整数,即不同的分法。

    输入输出样例

    输入样例#1:
    7 3
    
    输出样例#1: 
    4
    

    说明

    四种分法为:
    1,1,5;
    1,2,4;
    1,3,3;
    2,2,3.

      这道题一看就是一道搜索题,没有什么难度,但是路过的大佬你真的会优化这道搜索题吗?学就得学彻底。

      常规搜索讲解:

      前置技能:搜索

      搜索的方法很简单既然已经知道了数的个数,那么直接依次枚举每个位子上的值,然后判重即可。

      这道题的数据规模还算小,如果大一些了,那么它的时间复杂制度就会高到难以忍受。

      所以,我们就需要用到剪枝优化。

      剪枝优化讲解:

      这道题有两个用到剪枝的地方:

      ①我们为了避免重复,所以可以规定一个顺序,比如递增,即a[i-1]<=a[i]。比如说题中的例子:1,1,5和1,5,1和5,1,1中只取1,1,5。所以下一个数分配的最低值就是上一个数。

      ②因为上面定好了顺序,所以,我们总会发现这样的规律:剩下的n/剩下分的位数是下一个数分配的最高值,这是为什么呢?这个不好解释,举个栗子:假如好剩下12分到3个位子上去,那么第一个位子上绝对不会超过4,一旦超过就满足不了a[i-1]<=a[i]了。不信自己模拟一下。

      代码如下:

      

     1 #include<iostream>
     2 using namespace std;
     3 int n,k,a[10000],sum=0,ans;
     4 void dfs(int past,int cnt,int num)
     5 {
     6     if(cnt==1)
     7     {
     8         ans++;
     9         return;
    10     }
    11     for(int i=past;i<=num/cnt;i++)
    12     dfs(i,cnt-1,num-i);
    13 }
    14 int main()
    15 {
    16     cin>>n>>k;
    17     dfs(1,k,n);
    18     cout<<ans;
    19     return 0;
    20 }
  • 相关阅读:
    JBoss+MyEclipse+Mysql 的J2EE环境配置。
    编写一个Session EJB
    编写一个MDB (Message Drive Bean)
    轻便的客户端本地文件数据库 SQLite
    SSH(Struts+Spring+Hibernate)Summary/Profile
    Linux test命令
    mysql权限相关
    linux shell 查看进程的可执行程序路径
    添加dns
    Linux的shell变量
  • 原文地址:https://www.cnblogs.com/TFLS-gzr/p/11150827.html
Copyright © 2011-2022 走看看