数组:可以创建并组装它们,通过使用整型索引值访问它们的元素,并且它们的尺寸不能改变。
16.1 数组为什么特殊
数组与其他种类的容器之间的区别有三方面:效率,类型和保存基本类型的能力。
数组是一种效率最高的存储和随机访问对象引用序列的方式。数组就是一个简单的线性序列,这使得元素访问非常快速。但是为这种速度所付出的代价是数组对象的大小固定,并且在其生命周期中不可改变。
ArrayList:它可以通过一个新实例,然后把旧实例中所有引用移到新实例中,从而实现更多空间的自动分配。但它的效率比数组低很多。
数组可以持有基本类型,而泛型之前的容器不能。但有了泛型,容器旧可以指定并检查它们所持有对象的类型,并且有了自动包装机制,容器看起来还能够持有基本类型。
数组和泛型容器比较:
import java.util.*;
import static net.mindview.util.Print.*;
class BerylliumSphere {
private static long counter;
private final long id = counter++;
public String toString() { return "Sphere " + id; }
}
public class ContainerComparison {
public static void main(String[] args) {
BerylliumSphere[] spheres = new BerylliumSphere[10];
for(int i = 0; i < 5; i++)
spheres[i] = new BerylliumSphere();
print(Arrays.toString(spheres));
print(spheres[4]);
List<BerylliumSphere> sphereList =
new ArrayList<BerylliumSphere>();
for(int i = 0; i < 5; i++)
sphereList.add(new BerylliumSphere());
print(sphereList);
print(sphereList.get(4));
int[] integers = { 0, 1, 2, 3, 4, 5 };
print(Arrays.toString(integers));
print(integers[4]);
List<Integer> intList = new ArrayList<Integer>(
Arrays.asList(0, 1, 2, 3, 4, 5));
intList.add(97);
print(intList);
print(intList.get(4));
}
} /* Output:
[Sphere 0, Sphere 1, Sphere 2, Sphere 3, Sphere 4, null, null, null, null, null]
Sphere 4
[Sphere 5, Sphere 6, Sphere 7, Sphere 8, Sphere 9]
Sphere 9
[0, 1, 2, 3, 4, 5]
4
[0, 1, 2, 3, 4, 5, 97]
4
*///:~
数组的优点是效率。
16.2 数组是第一级对象
无论使用哪种类型的数组,数组标识符其实只是一个引用,指向在堆中创建的一个真实对象,这个对象用以保存指向其他对象的引用。
对象数组和基本类型数组在使用上几乎是相同的。唯一区别就是对象数组保存的是引用,基本类型数组直接保存基本类型的值。
import java.util.*;
import static net.mindview.util.Print.*;
public class ArrayOptions {
public static void main(String[] args) {
// Arrays of objects:
BerylliumSphere[] a; // Local uninitialized variable
BerylliumSphere[] b = new BerylliumSphere[5];
// The references inside the array are
// automatically initialized to null:
print("b: " + Arrays.toString(b));
BerylliumSphere[] c = new BerylliumSphere[4];
for(int i = 0; i < c.length; i++)
if(c[i] == null) // Can test for null reference
c[i] = new BerylliumSphere();
// Aggregate initialization:
BerylliumSphere[] d = { new BerylliumSphere(),
new BerylliumSphere(), new BerylliumSphere()
};
print("d"+Arrays.toString(d));
// Dynamic aggregate initialization:
a = new BerylliumSphere[]{
new BerylliumSphere(), new BerylliumSphere(),
};
// (Trailing comma is optional in both cases)
print("a.length = " + a.length);
print("b.length = " + b.length);
print("c.length = " + c.length);
print("d.length = " + d.length);
a = d;
print("a.length = " + a.length);
// Arrays of primitives:
int[] e; // Null reference
int[] f = new int[5];
// The primitives inside the array are
// automatically initialized to zero:
print("f: " + Arrays.toString(f));
int[] g = new int[4];
for(int i = 0; i < g.length; i++)
g[i] = i*i;
int[] h = { 11, 47, 93 };
// Compile error: variable e not initialized:
//!print("e.length = " + e.length);
print("f.length = " + f.length);
print("g.length = " + g.length);
print("h.length = " + h.length);
e = h;
print("e.length = " + e.length);
e = new int[]{ 1, 2 };
print("e.length = " + e.length);
}
} /* Output:
b: [null, null, null, null, null]
a.length = 2
b.length = 5
c.length = 4
d.length = 3
a.length = 3
f: [0, 0, 0, 0, 0]
f.length = 5
g.length = 4
h.length = 3
e.length = 3
e.length = 2
*///:~
16.3 返回一个数组
数组的清理由垃圾回收机制负责。
import java.util.*;
public class IceCream {
private static Random rand = new Random(47);
static final String[] FLAVORS = {
"Chocolate", "Strawberry", "Vanilla Fudge Swirl",
"Mint Chip", "Mocha Almond Fudge", "Rum Raisin",
"Praline Cream", "Mud Pie"
};
public static String[] flavorSet(int n) {
if(n > FLAVORS.length)
throw new IllegalArgumentException("Set too big");
String[] results = new String[n];
boolean[] picked = new boolean[FLAVORS.length];
for(int i = 0; i < n; i++) {
int t;
do
t = rand.nextInt(FLAVORS.length);
while(picked[t]);
results[i] = FLAVORS[t];
picked[t] = true;
}
return results;
}
public static void main(String[] args) {
for(int i = 0; i < 7; i++)
System.out.println(Arrays.toString(flavorSet(3)));
}
} /* Output:
[Rum Raisin, Mint Chip, Mocha Almond Fudge]
[Chocolate, Strawberry, Mocha Almond Fudge]
[Strawberry, Mint Chip, Mocha Almond Fudge]
[Rum Raisin, Vanilla Fudge Swirl, Mud Pie]
[Vanilla Fudge Swirl, Chocolate, Mocha Almond Fudge]
[Praline Cream, Strawberry, Mocha Almond Fudge]
[Mocha Almond Fudge, Strawberry, Mint Chip]
*///:~
16.4 多维数组
对于基本类型得多维数组,可以通过使用花括号将每个向量隔开:
import java.util.*;
public class MultidimensionalPrimitiveArray {
public static void main(String[] args) {
int[][] a = {
{ 1, 2, 3, },
{ 4, 5, 6, },
};System.out.println(Arrays.deepToString(a));
System.out.println(a[0].length);
System.out.println(a[1].length);
}
} /* Output:
[[1, 2, 3], [4, 5, 6]]
*///:~
还可以使用new来分配数组:
import java.util.*;
public class ThreeDWithNew {
public static void main(String[] args) {
// 3-D array with fixed length:
int[][][] a = new int[2][2][4];
System.out.println(Arrays.deepToString(a));
}
} /* Output:
[[[0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0]]]
*///:~
你可以看到基本类型数组得值在不进行显式初始化得情况下,会被自动初始化。对象数组会被初始化为null。
数组中构成矩阵得每个向量都可以具有任意得长度(粗糙数组)
import java.util.*;
public class RaggedArray {
public static void main(String[] args) {
Random rand = new Random(47);
// 3-D array with varied-length vectors:
int[][][] a = new int[rand.nextInt(7)][][];
for(int i = 0; i < a.length; i++) {
a[i] = new int[rand.nextInt(5)][];
for(int j = 0; j < a[i].length; j++)
a[i][j] = new int[rand.nextInt(5)];
}
System.out.println(Arrays.deepToString(a));
}
} /* Output:
[[], [[0], [0], [0, 0, 0, 0]], [[], [0, 0], [0, 0]], [[0, 0, 0], [0], [0, 0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0], []], [[0], [], [0]]]
*///:~
用花括号把多个new表达式组织到一起:
import java.util.*;
public class MultidimensionalObjectArrays {
public static void main(String[] args) {
BerylliumSphere[][] spheres = {
{ new BerylliumSphere(), new BerylliumSphere() },
{ new BerylliumSphere(), new BerylliumSphere(),
new BerylliumSphere(), new BerylliumSphere() },
{ new BerylliumSphere(), new BerylliumSphere(),
new BerylliumSphere(), new BerylliumSphere(),
new BerylliumSphere(), new BerylliumSphere(),
new BerylliumSphere(), new BerylliumSphere() },
};
System.out.println(Arrays.deepToString(spheres));
}
} /* Output:
[[Sphere 0, Sphere 1], [Sphere 2, Sphere 3, Sphere 4, Sphere 5], [Sphere 6, Sphere 7, Sphere 8, Sphere 9, Sphere 10, Sphere 11, Sphere 12, Sphere 13]]
*///:~
自动包装机制对数组初始化器也起作用:
import java.util.*;
public class AutoboxingArrays {
public static void main(String[] args) {
Integer[][] a = { // Autoboxing:
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 },
{ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 },
{ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 },
{ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 },
};
System.out.println(Arrays.deepToString(a));
}
} /* Output:
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [21, 22, 23, 24, 25, 26, 27, 28, 29, 30], [51, 52, 53, 54, 55, 56, 57, 58, 59, 60], [71, 72, 73, 74, 75, 76, 77, 78, 79, 80]]
*///:~
Arrays.deepToString()方法对基本类型数组和对象数组都起作用:
import java.util.*;
public class MultiDimWrapperArray {
public static void main(String[] args) {
Integer[][] a1 = { // Autoboxing
{ 1, 2, 3, },
{ 4, 5, 6, },
};
Double[][][] a2 = { // Autoboxing
{ { 1.1, 2.2 }, { 3.3, 4.4 } },
{ { 5.5, 6.6 }, { 7.7, 8.8 } },
{ { 9.9, 1.2 }, { 2.3, 3.4 } },
};
String[][] a3 = {
{ "The", "Quick", "Sly", "Fox" },
{ "Jumped", "Over" },
{ "The", "Lazy", "Brown", "Dog", "and", "friend" },
};
String[][] a4=new String[2][3];
System.out.println("a1: " + Arrays.deepToString(a1));
System.out.println("a2: " + Arrays.deepToString(a2));
System.out.println("a3: " + Arrays.deepToString(a3));
System.out.println("a3: " + Arrays.deepToString(a4));
}
} /* Output:
a1: [[1, 2, 3], [4, 5, 6]]
a2: [[[1.1, 2.2], [3.3, 4.4]], [[5.5, 6.6], [7.7, 8.8]], [[9.9, 1.2], [2.3, 3.4]]]
a3: [[The, Quick, Sly, Fox], [Jumped, Over], [The, Lazy, Brown, Dog, and, friend]]
*///:~
16.5 数组与泛型
数组与泛型不能很好的结合。你不能实例化具有参数化类型的数组。
擦除会移除参数类型信息,而数组必须知道它们所持有的确切类型,以强制保证类型安全。
参数化数组本身的类型:
class ClassParameter<T> {
public T[] f(T[] arg) { return arg; }
}
class MethodParameter {
public static <T> T[] f(T[] arg) { return arg; }
}
public class ParameterizedArrayType {
public static void main(String[] args) {
Integer[] ints = { 1, 2, 3, 4, 5 };
Double[] doubles = { 1.1, 2.2, 3.3, 4.4, 5.5 };
Integer[] ints2 =
new ClassParameter<Integer>().f(ints);
Double[] doubles2 =
new ClassParameter<Double>().f(doubles);
ints2 = MethodParameter.f(ints);
doubles2 = MethodParameter.f(doubles);
}
} ///:~
不能创建实际的持有泛型的数组对象,但是你可以创建非泛型的数组,然后将其转型:
import java.util.*;
public class ArrayOfGenerics {
@SuppressWarnings("unchecked")
public static void main(String[] args) {
List<String>[] ls;
List[] la = new List[10];
ls = (List<String>[])la; // "Unchecked" warning
ls[0] = new ArrayList<String>();
// Compile-time checking produces an error:
//ls[1] = new ArrayList<Integer>();
// The problem: List<String> is a subtype of Object
Object[] objects = ls; // So assignment is OK
// Compiles and runs without complaint:
objects[1] = new ArrayList<Integer>();
// However, if your needs are straightforward it is
// possible to create an array of generics, albeit
// with an "unchecked" warning:
List<BerylliumSphere>[] spheres =
(List<BerylliumSphere>[])new List[10];
for(int i = 0; i < spheres.length; i++)
spheres[i] = new ArrayList<BerylliumSphere>();
}
} ///:~
泛型在类或方法的边界处很有效,而在类或方法的内部,擦除通常会使泛型变得不适用。
不能创建泛型数组:
public class ArrayOfGenericType<T> {
T[] array; // OK
@SuppressWarnings("unchecked")
public ArrayOfGenericType(int size) {
//! array = new T[size]; // Illegal
array = (T[])new Object[size]; // "unchecked" Warning
}
// Illegal:
//! public <U> U[] makeArray() { return new U[10]; }
} ///:~
16.6 创建测试数据
16.6.1 Arrays.fill()
只能用一个值填充各个位置,而针对对象而言,就是复制同一个引用进行填充:
import java.util.*;
import static net.mindview.util.Print.*;
public class FillingArrays {
public static void main(String[] args) {
int size = 6;
boolean[] a1 = new boolean[size];
byte[] a2 = new byte[size];
char[] a3 = new char[size];
short[] a4 = new short[size];
int[] a5 = new int[size];
long[] a6 = new long[size];
float[] a7 = new float[size];
double[] a8 = new double[size];
String[] a9 = new String[size];
Arrays.fill(a1, true);
print("a1 = " + Arrays.toString(a1));
Arrays.fill(a2, (byte)11);
print("a2 = " + Arrays.toString(a2));
Arrays.fill(a3, 'x');
print("a3 = " + Arrays.toString(a3));
Arrays.fill(a4, (short)17);
print("a4 = " + Arrays.toString(a4));
Arrays.fill(a5, 19);
print("a5 = " + Arrays.toString(a5));
Arrays.fill(a6, 23);
print("a6 = " + Arrays.toString(a6));
Arrays.fill(a7, 29);
print("a7 = " + Arrays.toString(a7));
Arrays.fill(a8, 47);
print("a8 = " + Arrays.toString(a8));
Arrays.fill(a9, "Hello");
print("a9 = " + Arrays.toString(a9));
// Manipulating ranges:
Arrays.fill(a9, 3, 5, "World");
print("a9 = " + Arrays.toString(a9));
}
} /* Output:
a1 = [true, true, true, true, true, true]
a2 = [11, 11, 11, 11, 11, 11]
a3 = [x, x, x, x, x, x]
a4 = [17, 17, 17, 17, 17, 17]
a5 = [19, 19, 19, 19, 19, 19]
a6 = [23, 23, 23, 23, 23, 23]
a7 = [29.0, 29.0, 29.0, 29.0, 29.0, 29.0]
a8 = [47.0, 47.0, 47.0, 47.0, 47.0, 47.0]
a9 = [Hello, Hello, Hello, Hello, Hello, Hello]
a9 = [Hello, Hello, Hello, World, World, Hello]
*///:~
使用Arrays.fill()可以填充整个数组,或者只填充某个区域。
16.6.2 数据生成器
package net.mindview.util;
public class CountingGenerator {
static char[] chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".toCharArray();
public CountingGenerator() {
}
public static class Boolean implements Generator<java.lang.Boolean> {
private boolean value = false;
public Boolean() {
}
public java.lang.Boolean next() {
this.value = !this.value;
return this.value;
}
}
public static class Byte implements Generator<java.lang.Byte> {
private byte value = 0;
public Byte() {
}
public java.lang.Byte next() {
return this.value++;
}
}
public static class Character implements Generator<java.lang.Character> {
int index = -1;
public Character() {
}
public java.lang.Character next() {
this.index = (this.index + 1) % CountingGenerator.chars.length;
return CountingGenerator.chars[this.index];
}
}
public static class Double implements Generator<java.lang.Double> {
private double value = 0.0D;
public Double() {
}
public java.lang.Double next() {
double result = (double)(this.value++);
return result;
}
}
public static class Float implements Generator<java.lang.Float> {
private float value = 0.0F;
public Float() {
}
public java.lang.Float next() {
float result = this.value;
this.value = (float)((double)this.value + 1.0D);
return result;
}
}
public static class Integer implements Generator<java.lang.Integer> {
private int value = 0;
public Integer() {
}
public java.lang.Integer next() {
return this.value++;
}
}
public static class Long implements Generator<java.lang.Long> {
private long value = 0L;
public Long() {
}
public java.lang.Long next() {
return java.lang.Long.valueOf((long)(this.value++));
}
}
public static class Short implements Generator<java.lang.Short> {
private short value = 0;
public Short() {
}
public java.lang.Short next() {
return this.value++;
}
}
public static class String implements Generator<java.lang.String> {
private int length = 7;
Generator<java.lang.Character> cg = new CountingGenerator.Character();
public String() {
}
public String(int length) {
this.length = length;
}
public java.lang.String next() {
char[] buf = new char[this.length];
for(int i = 0; i < this.length; ++i) {
buf[i] = ((java.lang.Character)this.cg.next()).charValue();
}
return new java.lang.String(buf);
}
}
}
通过反射使用这个工具:
import net.mindview.util.*;
public class GeneratorsTest {
public static int size = 10;
public static void test(Class<?> surroundingClass) {
for(Class<?> type : surroundingClass.getClasses()) {
System.out.print(type.getSimpleName() + ": ");
try {
Generator<?> g = (Generator<?>)type.newInstance();
for(int i = 0; i < size; i++)
System.out.printf(g.next() + " ");
System.out.println();
} catch(Exception e) {
throw new RuntimeException(e);
}
}
}
public static void main(String[] args) {
test(CountingGenerator.class);
}
} /* Output:
Double: 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Float: 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Long: 0 1 2 3 4 5 6 7 8 9
Integer: 0 1 2 3 4 5 6 7 8 9
Short: 0 1 2 3 4 5 6 7 8 9
String: abcdefg hijklmn opqrstu vwxyzAB CDEFGHI JKLMNOP QRSTUVW XYZabcd efghijk lmnopqr
Character: a b c d e f g h i j
Byte: 0 1 2 3 4 5 6 7 8 9
Boolean: true false true false true false true false true false
*///:~
使用随机数生成器的Generator:
package net.mindview.util;
import java.util.Random;
public class RandomGenerator {
private static Random r = new Random(47L);
public RandomGenerator() {
}
public static class Boolean implements Generator<java.lang.Boolean> {
public Boolean() {
}
public java.lang.Boolean next() {
return RandomGenerator.r.nextBoolean();
}
}
public static class Byte implements Generator<java.lang.Byte> {
public Byte() {
}
public java.lang.Byte next() {
return (byte)RandomGenerator.r.nextInt();
}
}
public static class Character implements Generator<java.lang.Character> {
public Character() {
}
public java.lang.Character next() {
return CountingGenerator.chars[RandomGenerator.r.nextInt(CountingGenerator.chars.length)];
}
}
public static class Double implements Generator<java.lang.Double> {
public Double() {
}
public java.lang.Double next() {
long trimmed = Math.round(RandomGenerator.r.nextDouble() * 100.0D);
return (double)trimmed / 100.0D;
}
}
public static class Float implements Generator<java.lang.Float> {
public Float() {
}
public java.lang.Float next() {
int trimmed = Math.round(RandomGenerator.r.nextFloat() * 100.0F);
return (float)trimmed / 100.0F;
}
}
public static class Integer implements Generator<java.lang.Integer> {
private int mod = 10000;
public Integer() {
}
public Integer(int modulo) {
this.mod = modulo;
}
public java.lang.Integer next() {
return RandomGenerator.r.nextInt(this.mod);
}
}
public static class Long implements Generator<java.lang.Long> {
private int mod = 10000;
public Long() {
}
public Long(int modulo) {
this.mod = modulo;
}
public java.lang.Long next() {
return new java.lang.Long((long)RandomGenerator.r.nextInt(this.mod));
}
}
public static class Short implements Generator<java.lang.Short> {
public Short() {
}
public java.lang.Short next() {
return (short)RandomGenerator.r.nextInt();
}
}
public static class String extends net.mindview.util.CountingGenerator.String {
public String() {
this.cg = new RandomGenerator.Character();
}
public String(int length) {
super(length);
this.cg = new RandomGenerator.Character();
}
}
}
16.6.3 从Generator中创建数组
这个工具只能产生Object子类型数组,而不能产生基本类型数组:
package net.mindview.util;
import java.lang.reflect.Array;
public class Generated {
public Generated() {
}
public static <T> T[] array(T[] a, Generator<T> gen) {
return (new CollectionData(gen, a.length)).toArray(a);
}
public static <T> T[] array(Class<T> type, Generator<T> gen, int size) {
Object[] a = (Object[])Array.newInstance(type, size);
return (new CollectionData(gen, size)).toArray(a);
}
}
使用反射动态创建具有恰当类型和数量的新数组,然后使用与第一个方法相同的技术来填充该数组:
import java.util.*;
import net.mindview.util.*;
public class TestGenerated {
public static void main(String[] args) {
Integer[] a = { 9, 8, 7, 6 };
System.out.println(Arrays.toString(a));
a = Generated.array(a,new CountingGenerator.Integer());
System.out.println(Arrays.toString(a));
Integer[] b = Generated.array(Integer.class,
new CountingGenerator.Integer(), 15);
System.out.println(Arrays.toString(b));
}
} /* Output:
[9, 8, 7, 6]
[0, 1, 2, 3]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
*///:~
泛型不能用于基本类型,可以用生成器来填充基本类型。
创建一个转换器,它可以接受任意的包装器对象数组,并将其转化为相应的基本类型数组:
package net.mindview.util;
public class ConvertTo {
public ConvertTo() {
}
public static boolean[] primitive(Boolean[] in) {
boolean[] result = new boolean[in.length];
for(int i = 0; i < in.length; ++i) {
result[i] = in[i].booleanValue();
}
return result;
}
public static char[] primitive(Character[] in) {
char[] result = new char[in.length];
for(int i = 0; i < in.length; ++i) {
result[i] = in[i].charValue();
}
return result;
}
public static byte[] primitive(Byte[] in) {
byte[] result = new byte[in.length];
for(int i = 0; i < in.length; ++i) {
result[i] = in[i].byteValue();
}
return result;
}
public static short[] primitive(Short[] in) {
short[] result = new short[in.length];
for(int i = 0; i < in.length; ++i) {
result[i] = in[i].shortValue();
}
return result;
}
public static int[] primitive(Integer[] in) {
int[] result = new int[in.length];
for(int i = 0; i < in.length; ++i) {
result[i] = in[i].intValue();
}
return result;
}
public static long[] primitive(Long[] in) {
long[] result = new long[in.length];
for(int i = 0; i < in.length; ++i) {
result[i] = in[i].longValue();
}
return result;
}
public static float[] primitive(Float[] in) {
float[] result = new float[in.length];
for(int i = 0; i < in.length; ++i) {
result[i] = in[i].floatValue();
}
return result;
}
public static double[] primitive(Double[] in) {
double[] result = new double[in.length];
for(int i = 0; i < in.length; ++i) {
result[i] = in[i].doubleValue();
}
return result;
}
}
16.7 Arrays实用功能
Arrays类有一套用于static实用方法,它有六个基本方法:equals()比较数组,deepEquals()比较多维数组;fill()填充;sort()用于对数组排序;binarySearch()用于在排序的数组中查找元素;toString()产生数组的String表示;hashCode()产生数组的散列码。
16.7.1 复制数组
System.arraycopy()它复制数组比for快:
import java.util.*;
import static net.mindview.util.Print.*;
public class CopyingArrays {
public static void main(String[] args) {
int[] i = new int[7];
int[] j = new int[10];
Arrays.fill(i, 47);
Arrays.fill(j, 99);
print("i = " + Arrays.toString(i));
print("j = " + Arrays.toString(j));
System.arraycopy(i, 0, j, 0, i.length);
print("j = " + Arrays.toString(j));
int[] k = new int[5];
Arrays.fill(k, 103);
System.arraycopy(i, 0, k, 0, k.length);
print("k = " + Arrays.toString(k));
Arrays.fill(k, 103);
System.arraycopy(k, 0, i, 0, k.length);
print("i = " + Arrays.toString(i));
// Objects:
Integer[] u = new Integer[10];
Integer[] v = new Integer[5];
Arrays.fill(u, new Integer(47));
Arrays.fill(v, new Integer(99));
print("u = " + Arrays.toString(u));
print("v = " + Arrays.toString(v));
System.arraycopy(v, 0, u, u.length/2, v.length);
print("u = " + Arrays.toString(u));
}
} /* Output:
i = [47, 47, 47, 47, 47, 47, 47]
j = [99, 99, 99, 99, 99, 99, 99, 99, 99, 99]
j = [47, 47, 47, 47, 47, 47, 47, 99, 99, 99]
k = [47, 47, 47, 47, 47]
i = [103, 103, 103, 103, 103, 47, 47]
u = [47, 47, 47, 47, 47, 47, 47, 47, 47, 47]
v = [99, 99, 99, 99, 99]
u = [47, 47, 47, 47, 47, 99, 99, 99, 99, 99]
*///:~
System.arraycopy()不会执行自动包装,两个数组必须具有相同的确切类型。
16.7.2 数组的比较
import java.util.*;
import static net.mindview.util.Print.*;
public class ComparingArrays {
public static void main(String[] args) {
int[] a1 = new int[10];
int[] a2 = new int[10];
Arrays.fill(a1, 47);
Arrays.fill(a2, 47);
print(Arrays.equals(a1, a2));
a2[3] = 11;
print(Arrays.equals(a1, a2));
String[] s1 = new String[4];
Arrays.fill(s1, "Hi");
String[] s2 = { new String("Hi"), new String("Hi"),
new String("Hi"), new String("Hi") };
print(Arrays.equals(s1, s2));
}
} /* Output:
true
false
true
*///:~
16.7.3 数组元素的比较
排序必须根据对象的实际类型执行比较操作。
程序设计的基本目标是:将保存不变的事物与会发生改变的事物相分离。这里,不变的是通用的排序算法,变化的是各种对象相互比较的方式。通过使用策略设计模式,可以将会发生变化的代码封装在单独的类中(策略对象),你可以将策略对象传递给总是相同的代码。
一种比较实现Comparable接口:
import java.util.*;
import net.mindview.util.*;
import static net.mindview.util.Print.*;
public class CompType implements Comparable<CompType> {
int i;
int j;
private static int count = 1;
public CompType(int n1, int n2) {
i = n1;
j = n2;
}
public String toString() {
String result = "[i = " + i + ", j = " + j + "]";
if(count++ % 3 == 0)
result += "
";
return result;
}
public int compareTo(CompType rv) {
return (i < rv.i ? -1 : (i == rv.i ? 0 : 1));
}
private static Random r = new Random(47);
public static Generator<CompType> generator() {
return new Generator<CompType>() {
public CompType next() {
return new CompType(r.nextInt(100),r.nextInt(100));
}
};
}
public static void main(String[] args) {
CompType[] a =
Generated.array(new CompType[12], generator());
print("before sorting:");
print(Arrays.toString(a));
Arrays.sort(a);
print("after sorting:");
print(Arrays.toString(a));
}
} /* Output:
before sorting:
[[i = 58, j = 55], [i = 93, j = 61], [i = 61, j = 29]
, [i = 68, j = 0], [i = 22, j = 7], [i = 88, j = 28]
, [i = 51, j = 89], [i = 9, j = 78], [i = 98, j = 61]
, [i = 20, j = 58], [i = 16, j = 40], [i = 11, j = 22]
]
after sorting:
[[i = 9, j = 78], [i = 11, j = 22], [i = 16, j = 40]
, [i = 20, j = 58], [i = 22, j = 7], [i = 51, j = 89]
, [i = 58, j = 55], [i = 61, j = 29], [i = 68, j = 0]
, [i = 88, j = 28], [i = 93, j = 61], [i = 98, j = 61]
]
*///:~
另一种方法,Collection类包含一个reverseOrder()fangfa,该方法可以产生一个Comparator,它可以反转自然排序顺序:
import java.util.*;
import net.mindview.util.*;
import static net.mindview.util.Print.*;
public class Reverse {
public static void main(String[] args) {
CompType[] a = Generated.array(
new CompType[12], CompType.generator());
print("before sorting:");
print(Arrays.toString(a));
Arrays.sort(a, Collections.reverseOrder());
print("after sorting:");
print(Arrays.toString(a));
}
} /* Output:
before sorting:
[[i = 58, j = 55], [i = 93, j = 61], [i = 61, j = 29]
, [i = 68, j = 0], [i = 22, j = 7], [i = 88, j = 28]
, [i = 51, j = 89], [i = 9, j = 78], [i = 98, j = 61]
, [i = 20, j = 58], [i = 16, j = 40], [i = 11, j = 22]
]
after sorting:
[[i = 98, j = 61], [i = 93, j = 61], [i = 88, j = 28]
, [i = 68, j = 0], [i = 61, j = 29], [i = 58, j = 55]
, [i = 51, j = 89], [i = 22, j = 7], [i = 20, j = 58]
, [i = 16, j = 40], [i = 11, j = 22], [i = 9, j = 78]
]
*///:~
也可以自己编写Comparator:
import java.util.*;
import net.mindview.util.*;
import static net.mindview.util.Print.*;
class CompTypeComparator implements Comparator<CompType> {
public int compare(CompType o1, CompType o2) {
return (o1.j < o2.j ? -1 : (o1.j == o2.j ? 0 : 1));
}
}
public class ComparatorTest {
public static void main(String[] args) {
CompType[] a = Generated.array(
new CompType[12], CompType.generator());
print("before sorting:");
print(Arrays.toString(a));
Arrays.sort(a, new CompTypeComparator());
print("after sorting:");
print(Arrays.toString(a));
}
} /* Output:
before sorting:
[[i = 58, j = 55], [i = 93, j = 61], [i = 61, j = 29]
, [i = 68, j = 0], [i = 22, j = 7], [i = 88, j = 28]
, [i = 51, j = 89], [i = 9, j = 78], [i = 98, j = 61]
, [i = 20, j = 58], [i = 16, j = 40], [i = 11, j = 22]
]
after sorting:
[[i = 68, j = 0], [i = 22, j = 7], [i = 11, j = 22]
, [i = 88, j = 28], [i = 61, j = 29], [i = 16, j = 40]
, [i = 58, j = 55], [i = 20, j = 58], [i = 93, j = 61]
, [i = 98, j = 61], [i = 9, j = 78], [i = 51, j = 89]
]
*///:~
16.7.4 数组排序
使用内置的排序方法,就可以对任意的基本类型数组排序,也可以对任意的对象数组进行排序,只要该对象实现了Comparable接口或具有关联的Comparator。
随机生成String对象,并排序:
import java.util.*;
import net.mindview.util.*;
import static net.mindview.util.Print.*;
public class StringSorting {
public static void main(String[] args) {
String[] sa = Generated.array(new String[20],
new RandomGenerator.String(5));
print("Before sort: " + Arrays.toString(sa));
Arrays.sort(sa);
print("After sort: " + Arrays.toString(sa));
Arrays.sort(sa, Collections.reverseOrder());
print("Reverse sort: " + Arrays.toString(sa));
Arrays.sort(sa, String.CASE_INSENSITIVE_ORDER);
print("Case-insensitive sort: " + Arrays.toString(sa));
}
}
排序算法针对正排序的特殊类型进行了优化——针对基本类型设计的"快速排序",以及针对对象设计的"稳定归并排序"。
16.7.5 在已排序的数组中查找
import java.util.*;
import net.mindview.util.*;
import static net.mindview.util.Print.*;
public class ArraySearching {
public static void main(String[] args) {
Generator<Integer> gen =
new RandomGenerator.Integer(1000);
int[] a = ConvertTo.primitive(
Generated.array(new Integer[25], gen));
Arrays.sort(a);
print("Sorted array: " + Arrays.toString(a));
while(true) {
int r = gen.next();
int location = Arrays.binarySearch(a, r);
if(location >= 0) {
print("Location of " + r + " is " + location +
", a[" + location + "] = " + a[location]);
break; // Out of while loop
}
}
}
}
如果使用Comparator排序某个对象数组,在使用binarySearch()时必须提供同样的Comparator。
import java.util.*;
import net.mindview.util.*;
public class AlphabeticSearch {
public static void main(String[] args) {
String[] sa = Generated.array(new String[30],
new RandomGenerator.String(5));
Arrays.sort(sa, String.CASE_INSENSITIVE_ORDER);
System.out.println(Arrays.toString(sa));
int index = Arrays.binarySearch(sa, sa[10],
String.CASE_INSENSITIVE_ORDER);
System.out.println("Index: "+ index + "
"+ sa[index]);
}
} /* Output:
[bkIna, cQrGs, cXZJo, dLsmw, eGZMm, EqUCB, gwsqP, hKcxr, HLGEa, HqXum, HxxHv, JMRoE, JmzMs, Mesbt, MNvqe, nyGcF, ogoYW, OneOE, OWZnT, RFJQA, rUkZP, sgqia, slJrL, suEcU, uTpnX, vpfFv, WHkjU, xxEAJ, YNzbr, zDyCy]
Index: 10
HxxHv
*///:~