zoukankan      html  css  js  c++  java
  • 24点游戏

    转自:https://www.cnblogs.com/grandyang/p/8395062.html Mark

    代码:

    You have 4 cards each containing a number from 1 to 9. You need to judge whether they could operated through */+-()to get the value of 24.

    Example 1:

    Input: [4, 1, 8, 7]
    Output: True
    Explanation: (8-4) * (7-1) = 24
    

     

    Example 2:

    Input: [1, 2, 1, 2]
    Output: False
    

     

    Note:

    1. The division operator / represents real division, not integer division. For example, 4 / (1 - 2/3) = 12.
    2. Every operation done is between two numbers. In particular, we cannot use - as a unary operator. For example, with [1, 1, 1, 1] as input, the expression -1 - 1 - 1 - 1 is not allowed.
    3. You cannot concatenate numbers together. For example, if the input is [1, 2, 1, 2], we cannot write this as 12 + 12.

     

    这道题就是经典的24点游戏了,记得小时候经常玩这个游戏,就是每个人发四张牌,看谁最快能算出24,这完全是脑力大比拼啊,不是拼的牌技。玩的多了,就会摸出一些套路来,比如尽量去凑2和12,3和8,4和6等等,但是对于一些特殊的case,比如 [1, 5, 5, 5] 这种,正确的解法是 5 * (5 - 1 / 5),一般人都会去试加减乘,和能整除的除法,而像这种带小数的确实很难想到,但是程序计算就没问题,可以遍历所有的情况,这也是这道题的实际意义所在吧。那么既然是要遍历所有的情况,我们应该隐约感觉到应该是要使用递归来做的。我们想,任意的两个数字之间都可能进行加减乘除,其中加法和乘法对于两个数字的前后顺序没有影响,但是减法和除法是有影响的,而且做除法的时候还要另外保证除数不能为零。我们要遍历任意两个数字,然后对于这两个数字,尝试各种加减乘除后得到一个新数字,将这个新数字加到原数组中,记得原来的两个数要移除掉,然后调用递归函数进行计算,我们可以发现每次调用递归函数后,数组都减少一个数字,那么当减少到只剩一个数字了,就是最后的计算结果,所以我们在递归函数开始时判断,如果数组只有一个数字,且为24,说明可以算出24,结果res赋值为true返回。这里我们的结果res是一个全局的变量,如果已经为true了,就没必要再进行运算了,所以第一行应该是判断结果res,为true就直接返回了。我们遍历任意两个数字,分别用p和q来取出,然后进行两者的各种加减乘除的运算,将结果保存进数组临时数组t,记得要判断除数不为零。然后将原数组nums中的p和q移除,遍历临时数组t中的数字,将其加入数组nums,然后调用递归函数,记得完成后要移除数字,恢复状态,这是递归解法很重要的一点。最后还要把p和q再加回原数组nums,这也是还原状态,参见代码如下:

     

    解法一:

    class Solution {
    public:
        bool judgePoint24(vector<int>& nums) {
            bool res = false;
            double eps = 0.001;
            vector<double> arr(nums.begin(), nums.end());
            helper(arr, eps, res);
            return res;
        }
        void helper(vector<double>& nums, double eps, bool& res) {
            if (res) return;
            if (nums.size() == 1) {
                if (abs(nums[0] - 24) < eps) res = true;
                return;
            }
            for (int i = 0; i < nums.size(); ++i) {
                for (int j = 0; j < i; ++j) {
                    double p = nums[i], q = nums[j];
                    vector<double> t{p + q, p - q, q - p, p * q};
                    if (p > eps) t.push_back(q / p);
                    if (q > eps) t.push_back(p / q);
                    nums.erase(nums.begin() + i);
                    nums.erase(nums.begin() + j);
                    for (double d : t) {
                        nums.push_back(d);
                        helper(nums, eps, res);
                        nums.pop_back();
                    }
                    nums.insert(nums.begin() + j, q);
                    nums.insert(nums.begin() + i, p);
                }
            }
        }
    };

    来看一种很不同的递归写法,这里将加减乘除操作符放到了一个数组ops中。并且没有用全局变量res,而是让递归函数带有bool型返回值。在递归函数中,还是要先看nums数组的长度,如果为1了,说明已经计算完成,直接看结果是否为0就行了。然后遍历任意两个数字,注意这里的i和j都分别从0到了数组长度,而上面解法的j是从0到i,这是因为上面解法将p - q, q - p, q / q, q / p都分别列出来了,而这里仅仅是nums[i] - nums[j], nums[i] / nums[j],所以i和j要交换位置,但是为了避免加法和乘法的重复计算,我们可以做个判断,还有别忘记了除数不为零的判断,i和j不能相同的判断。我们建立一个临时数组t,将非i和j位置的数字都加入t,然后遍历操作符数组ops,每次取出一个操作符,然后将nums[i]和nums[j]的计算结果加入t,调用递归函数,如果递归函数返回true了,那么就直接返回true。否则移除刚加入的结果,还原t的状态,参见代码如下:

     

    解法二:

    class Solution {
    public:
        bool judgePoint24(vector<int>& nums) {
            double eps = 0.001;
            vector<char> ops{'+', '-', '*', '/'};
            vector<double> arr(nums.begin(), nums.end());
            return helper(arr, ops, eps);
        }
        bool helper(vector<double>& nums, vector<char>& ops, double eps) {
            if (nums.size() == 1) return abs(nums[0] - 24) < eps;
            for (int i = 0; i < nums.size(); ++i) {
                for (int j = 0; j < nums.size(); ++j) {
                    if (i == j) continue;
                    vector<double> t;
                    for (int k = 0; k < nums.size(); ++k) {
                        if (k != i && k != j) t.push_back(nums[k]);
                    }
                    for (char op : ops) {
                        if ((op == '+' || op == '*') && i > j) continue;
                        if (op == '/' && nums[j] < eps) continue;
                        switch(op) {
                            case '+': t.push_back(nums[i] + nums[j]); break;
                            case '-': t.push_back(nums[i] - nums[j]); break;
                            case '*': t.push_back(nums[i] * nums[j]); break;
                            case '/': t.push_back(nums[i] / nums[j]); break;
                        }
                        if (helper(t, ops, eps)) return true;
                        t.pop_back();
                    }
                }
            }
            return false;
        }
    };

    讨论:博主在调试的时候,遇到了这个test case: [1, 3, 4, 6],返回的是true,但是博主心算了一会,并没有想出其是如何算出24的。所以博主在想,能不能修改下代码,使得其能将运算的过程返回出来。其实并不难改,基于解法二来改一下,我们发现,计算后的结果被存入了临时数组t,进行下一次递归,我们需要将这个过程保存下来,用一个字符串数组,比如"1+3",或者"1-3"等等,这个数组跟数组t大小相同,操作基本相同,同时需要被传入到下一次递归函数中,而在下一次递归函数中,数组t中取出的就是4和-2,但是字符串数组就可以取出"1+3"和"1-3",我们就可以继续和别的数进行计算了,比如要乘以4,我们需要给取出的字符串加上括号,就变成了(1+3)*4了,就通过这种方法就可以将过程返回了,运行test case: [1, 3, 4, 6],返回得到:

    (6/(1-(3/4)))

    没有问题,还有就是,由于组成24的方法可能不止1种,我们可以将所有情况都返回,那么我们的递归函数就不要有返回值,这样可以遍历完所有的情况,对于test case: [1, 2, 3, 8],返回如下:

    ((8-2)*(1+3))
    (8/(1-(2/3)))
    (3/((2-1)/8))
    (3*(8/(2-1)))
    (8*(3*(2-1)))
    (2*(1+(3+8)))
    (8/((2-1)/3))
    (3*(8*(2-1)))
    ((1+3)*(8-2))
    ((3*8)/(2-1))
    (8*(3/(2-1)))
    ((3*8)*(2-1))
    (2*(8+(1+3)))
    ((2-1)*(3*8))
    (2*(3+(1+8)))

    被惊到了有木有!居然有这么多种计算方法可以得到24~

     

    参考资料:

    https://discuss.leetcode.com/topic/104042/679-24-game-c-recursive

    https://discuss.leetcode.com/topic/103962/java-easy-to-understand-backtracking

  • 相关阅读:
    Redis和Memcache区别,优缺点对比
    C# 修改Config文件,增删查改
    SQL SERVER-时间戳(timestamp)与时间格式(datetime)互相转换
    post数据时报错:远程服务器返回错误: (400) 错误的请求。
    Win10 通过附加进程调试时出现“此任务要求应用程序具有提升的权限”
    谈谈技术原则,技术学习方法,代码阅读及其它
    C# 对象与JSON字符串互相转换的三种方式
    JSON.stringify 语法实例讲解
    前端Json对象与Json字符串互转(4种转换方式)
    Razor引擎学习:RenderBody,RenderPage和RenderSection
  • 原文地址:https://www.cnblogs.com/Tang-tangt/p/9889692.html
Copyright © 2011-2022 走看看