zoukankan      html  css  js  c++  java
  • FFT(快速傅里叶变换):HDU 4609 3-idiots

    3-idiots

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3560    Accepted Submission(s): 1241


    Problem Description
      King OMeGa catched three men who had been streaking in the street. Looking as idiots though, the three men insisted that it was a kind of performance art, and begged the king to free them. Out of hatred to the real idiots, the king wanted to check if they were lying. The three men were sent to the king's forest, and each of them was asked to pick a branch one after another. If the three branches they bring back can form a triangle, their math ability would save them. Otherwise, they would be sent into jail.
    However, the three men were exactly idiots, and what they would do is only to pick the branches randomly. Certainly, they couldn't pick the same branch - but the one with the same length as another is available. Given the lengths of all branches in the forest, determine the probability that they would be saved.
     
    Input
      An integer T(T≤100) will exist in the first line of input, indicating the number of test cases.
    Each test case begins with the number of branches N(3≤N≤105).
    The following line contains N integers a_i (1≤a_i≤105), which denotes the length of each branch, respectively.
     
    Output
      Output the probability that their branches can form a triangle, in accuracy of 7 decimal places.
     
    Sample Input
    2
    4
    1 3 3 4
    4
    2 3 3 4
     
    Sample Output
    0.5000000
    1.0000000
     
      大家都去mod邝斌吧~
     1 #include <algorithm>
     2 #include <iostream>
     3 #include <cstring>
     4 #include <cstdio>
     5 #include <cmath>
     6 using namespace std;
     7 const int maxn=500010;
     8 const long double PI=acos(-1.0);
     9 struct complex{
    10     long double r,i;
    11     complex(long double r_=0.0,long double i_=0.0){
    12         r=r_;i=i_;
    13     }
    14     complex operator +(complex &a){
    15         return complex(a.r+r,a.i+i);
    16     }
    17     complex operator -(complex &a){
    18         return complex(r-a.r,i-a.i);
    19     }
    20     complex operator *(complex a){
    21         return complex(r*a.r-i*a.i,i*a.r+a.i*r);
    22     }
    23 }A[maxn];
    24 
    25 void Rader(complex *a,int len){
    26     for(int i=1,j=len>>1;i<len-1;i++){
    27         if(i<j)swap(a[i],a[j]);
    28         int k=len>>1;
    29         while(j>=k){
    30             j-=k;
    31             k>>=1;
    32         }
    33         j+=k;
    34     }
    35 }
    36 
    37 void FFT(complex *a,int len,int on){
    38     Rader(a,len);
    39     for(int h=2;h<=len;h<<=1){
    40         complex wn(cos(-on*PI*2/h),sin(-on*PI*2/h));
    41         for(int j=0;j<len;j+=h){
    42             complex w(1.0,0);
    43             for(int k=j;k<j+(h>>1);k++){
    44                 complex x=a[k];
    45                 complex y=a[k+(h>>1)]*w;
    46                 a[k]=x+y;
    47                 a[k+(h>>1)]=x-y;
    48                 w=w*wn;
    49             }    
    50         }
    51     }
    52     if(on==-1)
    53         for(int i=0;i<len;i++)
    54             a[i].r/=len;
    55 }
    56 int a[maxn];
    57 long long num[maxn];
    58 int main(){
    59 #ifndef ONLINE_JUDGE
    60     //freopen("","r",stdin);
    61     //freopen("","w",stdout);
    62 #endif
    63     int T,n,len=1;
    64     scanf("%d",&T);
    65     while(T--){
    66         scanf("%d",&n);
    67         memset(A,0,sizeof(A));
    68         memset(num,0,sizeof(num));
    69         while(len<=200000)len<<=1;
    70         for(int i=1;i<=n;i++)
    71             scanf("%d",&a[i]);
    72         sort(a+1,a+n+1);len=1;
    73         while(len<=a[n]*2)len<<=1;
    74         for(int i=1;i<=n;i++)    
    75             A[a[i]].r++;
    76         FFT(A,len,1);
    77         for(int i=0;i<len;i++)
    78             A[i]=A[i]*A[i];
    79         FFT(A,len,-1);
    80         for(int i=0;i<len;i++)
    81             num[i]=(long long)(A[i].r+0.5);
    82         for(int i=1;i<=n;i++)
    83             num[a[i]<<1]--;
    84         for(int i=0;i<len;i++)    
    85             num[i]>>=1;
    86         for(int i=1;i<len;i++)
    87             num[i]+=num[i-1];
    88         long long cnt=0;
    89         for(int i=1;i<=n;i++){
    90             cnt+=num[len-1]-num[a[i]];
    91             cnt-=(long long)(n-i)*(i-1);
    92             cnt-=n-1;
    93             cnt-=(long long)(n-i)*(n-i-1)/2;
    94         }
    95         long long tot=((long long)n*(n-1)*(n-2))/6;
    96         printf("%.7lf
    ",1.0*cnt/tot);
    97     }
    98     return 0;
    99 }
    尽最大的努力,做最好的自己!
  • 相关阅读:
    Python中常见的文件对象内建函数
    数字整除
    Bag标签之校验
    开源硬件交流@上海新车间
    POJ 题目2774 Long Long Message(后缀数组,求最长公共子串长度)
    Linux以下的两种文件锁
    敏捷自己主动化单元測试 (从前台 JavaScript 至后台 Java)
    浅谈关于collection接口及相关容器类(一)
    上传文件 | 下载文件
    几年前再用exjts4,如今extjs5发布了,技术更新快,每次给人惊喜
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5518143.html
Copyright © 2011-2022 走看看