zoukankan      html  css  js  c++  java
  • FFT(快速傅里叶变换):HDU 4609 3-idiots

    3-idiots

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3560    Accepted Submission(s): 1241


    Problem Description
      King OMeGa catched three men who had been streaking in the street. Looking as idiots though, the three men insisted that it was a kind of performance art, and begged the king to free them. Out of hatred to the real idiots, the king wanted to check if they were lying. The three men were sent to the king's forest, and each of them was asked to pick a branch one after another. If the three branches they bring back can form a triangle, their math ability would save them. Otherwise, they would be sent into jail.
    However, the three men were exactly idiots, and what they would do is only to pick the branches randomly. Certainly, they couldn't pick the same branch - but the one with the same length as another is available. Given the lengths of all branches in the forest, determine the probability that they would be saved.
     
    Input
      An integer T(T≤100) will exist in the first line of input, indicating the number of test cases.
    Each test case begins with the number of branches N(3≤N≤105).
    The following line contains N integers a_i (1≤a_i≤105), which denotes the length of each branch, respectively.
     
    Output
      Output the probability that their branches can form a triangle, in accuracy of 7 decimal places.
     
    Sample Input
    2
    4
    1 3 3 4
    4
    2 3 3 4
     
    Sample Output
    0.5000000
    1.0000000
     
      大家都去mod邝斌吧~
     1 #include <algorithm>
     2 #include <iostream>
     3 #include <cstring>
     4 #include <cstdio>
     5 #include <cmath>
     6 using namespace std;
     7 const int maxn=500010;
     8 const long double PI=acos(-1.0);
     9 struct complex{
    10     long double r,i;
    11     complex(long double r_=0.0,long double i_=0.0){
    12         r=r_;i=i_;
    13     }
    14     complex operator +(complex &a){
    15         return complex(a.r+r,a.i+i);
    16     }
    17     complex operator -(complex &a){
    18         return complex(r-a.r,i-a.i);
    19     }
    20     complex operator *(complex a){
    21         return complex(r*a.r-i*a.i,i*a.r+a.i*r);
    22     }
    23 }A[maxn];
    24 
    25 void Rader(complex *a,int len){
    26     for(int i=1,j=len>>1;i<len-1;i++){
    27         if(i<j)swap(a[i],a[j]);
    28         int k=len>>1;
    29         while(j>=k){
    30             j-=k;
    31             k>>=1;
    32         }
    33         j+=k;
    34     }
    35 }
    36 
    37 void FFT(complex *a,int len,int on){
    38     Rader(a,len);
    39     for(int h=2;h<=len;h<<=1){
    40         complex wn(cos(-on*PI*2/h),sin(-on*PI*2/h));
    41         for(int j=0;j<len;j+=h){
    42             complex w(1.0,0);
    43             for(int k=j;k<j+(h>>1);k++){
    44                 complex x=a[k];
    45                 complex y=a[k+(h>>1)]*w;
    46                 a[k]=x+y;
    47                 a[k+(h>>1)]=x-y;
    48                 w=w*wn;
    49             }    
    50         }
    51     }
    52     if(on==-1)
    53         for(int i=0;i<len;i++)
    54             a[i].r/=len;
    55 }
    56 int a[maxn];
    57 long long num[maxn];
    58 int main(){
    59 #ifndef ONLINE_JUDGE
    60     //freopen("","r",stdin);
    61     //freopen("","w",stdout);
    62 #endif
    63     int T,n,len=1;
    64     scanf("%d",&T);
    65     while(T--){
    66         scanf("%d",&n);
    67         memset(A,0,sizeof(A));
    68         memset(num,0,sizeof(num));
    69         while(len<=200000)len<<=1;
    70         for(int i=1;i<=n;i++)
    71             scanf("%d",&a[i]);
    72         sort(a+1,a+n+1);len=1;
    73         while(len<=a[n]*2)len<<=1;
    74         for(int i=1;i<=n;i++)    
    75             A[a[i]].r++;
    76         FFT(A,len,1);
    77         for(int i=0;i<len;i++)
    78             A[i]=A[i]*A[i];
    79         FFT(A,len,-1);
    80         for(int i=0;i<len;i++)
    81             num[i]=(long long)(A[i].r+0.5);
    82         for(int i=1;i<=n;i++)
    83             num[a[i]<<1]--;
    84         for(int i=0;i<len;i++)    
    85             num[i]>>=1;
    86         for(int i=1;i<len;i++)
    87             num[i]+=num[i-1];
    88         long long cnt=0;
    89         for(int i=1;i<=n;i++){
    90             cnt+=num[len-1]-num[a[i]];
    91             cnt-=(long long)(n-i)*(i-1);
    92             cnt-=n-1;
    93             cnt-=(long long)(n-i)*(n-i-1)/2;
    94         }
    95         long long tot=((long long)n*(n-1)*(n-2))/6;
    96         printf("%.7lf
    ",1.0*cnt/tot);
    97     }
    98     return 0;
    99 }
    尽最大的努力,做最好的自己!
  • 相关阅读:
    什么是先进先出淘汰算法,试举出一种实现方法?
    什么是置换算法,在页式系统中常用的置换算法是什么?
    什么是系统的抖动,它有什么危害?
    如果主存中的某页正在与外部设备交换信息,缺页中断时可以将这一页淘汰吗?为了实现正确的页面调度,应如何扩充页表的功能?
    什么是虚拟存储器,在页式系统中如何实现虚拟存储?
    分区分配方法的主要缺点是什么,如何克服这一缺点?
    什么是最坏适应算法?该算法的特点是什么?
    什么是最佳适应算法,该算法的特点是什么?
    JAVA8 之初识函数式编程与函数式接口(一)
    使用 Netty 实现一个 MVC 框架
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5518143.html
Copyright © 2011-2022 走看看