zoukankan      html  css  js  c++  java
  • FFT(快速傅里叶变换):HDU 4609 3-idiots

    3-idiots

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3560    Accepted Submission(s): 1241


    Problem Description
      King OMeGa catched three men who had been streaking in the street. Looking as idiots though, the three men insisted that it was a kind of performance art, and begged the king to free them. Out of hatred to the real idiots, the king wanted to check if they were lying. The three men were sent to the king's forest, and each of them was asked to pick a branch one after another. If the three branches they bring back can form a triangle, their math ability would save them. Otherwise, they would be sent into jail.
    However, the three men were exactly idiots, and what they would do is only to pick the branches randomly. Certainly, they couldn't pick the same branch - but the one with the same length as another is available. Given the lengths of all branches in the forest, determine the probability that they would be saved.
     
    Input
      An integer T(T≤100) will exist in the first line of input, indicating the number of test cases.
    Each test case begins with the number of branches N(3≤N≤105).
    The following line contains N integers a_i (1≤a_i≤105), which denotes the length of each branch, respectively.
     
    Output
      Output the probability that their branches can form a triangle, in accuracy of 7 decimal places.
     
    Sample Input
    2
    4
    1 3 3 4
    4
    2 3 3 4
     
    Sample Output
    0.5000000
    1.0000000
     
      大家都去mod邝斌吧~
     1 #include <algorithm>
     2 #include <iostream>
     3 #include <cstring>
     4 #include <cstdio>
     5 #include <cmath>
     6 using namespace std;
     7 const int maxn=500010;
     8 const long double PI=acos(-1.0);
     9 struct complex{
    10     long double r,i;
    11     complex(long double r_=0.0,long double i_=0.0){
    12         r=r_;i=i_;
    13     }
    14     complex operator +(complex &a){
    15         return complex(a.r+r,a.i+i);
    16     }
    17     complex operator -(complex &a){
    18         return complex(r-a.r,i-a.i);
    19     }
    20     complex operator *(complex a){
    21         return complex(r*a.r-i*a.i,i*a.r+a.i*r);
    22     }
    23 }A[maxn];
    24 
    25 void Rader(complex *a,int len){
    26     for(int i=1,j=len>>1;i<len-1;i++){
    27         if(i<j)swap(a[i],a[j]);
    28         int k=len>>1;
    29         while(j>=k){
    30             j-=k;
    31             k>>=1;
    32         }
    33         j+=k;
    34     }
    35 }
    36 
    37 void FFT(complex *a,int len,int on){
    38     Rader(a,len);
    39     for(int h=2;h<=len;h<<=1){
    40         complex wn(cos(-on*PI*2/h),sin(-on*PI*2/h));
    41         for(int j=0;j<len;j+=h){
    42             complex w(1.0,0);
    43             for(int k=j;k<j+(h>>1);k++){
    44                 complex x=a[k];
    45                 complex y=a[k+(h>>1)]*w;
    46                 a[k]=x+y;
    47                 a[k+(h>>1)]=x-y;
    48                 w=w*wn;
    49             }    
    50         }
    51     }
    52     if(on==-1)
    53         for(int i=0;i<len;i++)
    54             a[i].r/=len;
    55 }
    56 int a[maxn];
    57 long long num[maxn];
    58 int main(){
    59 #ifndef ONLINE_JUDGE
    60     //freopen("","r",stdin);
    61     //freopen("","w",stdout);
    62 #endif
    63     int T,n,len=1;
    64     scanf("%d",&T);
    65     while(T--){
    66         scanf("%d",&n);
    67         memset(A,0,sizeof(A));
    68         memset(num,0,sizeof(num));
    69         while(len<=200000)len<<=1;
    70         for(int i=1;i<=n;i++)
    71             scanf("%d",&a[i]);
    72         sort(a+1,a+n+1);len=1;
    73         while(len<=a[n]*2)len<<=1;
    74         for(int i=1;i<=n;i++)    
    75             A[a[i]].r++;
    76         FFT(A,len,1);
    77         for(int i=0;i<len;i++)
    78             A[i]=A[i]*A[i];
    79         FFT(A,len,-1);
    80         for(int i=0;i<len;i++)
    81             num[i]=(long long)(A[i].r+0.5);
    82         for(int i=1;i<=n;i++)
    83             num[a[i]<<1]--;
    84         for(int i=0;i<len;i++)    
    85             num[i]>>=1;
    86         for(int i=1;i<len;i++)
    87             num[i]+=num[i-1];
    88         long long cnt=0;
    89         for(int i=1;i<=n;i++){
    90             cnt+=num[len-1]-num[a[i]];
    91             cnt-=(long long)(n-i)*(i-1);
    92             cnt-=n-1;
    93             cnt-=(long long)(n-i)*(n-i-1)/2;
    94         }
    95         long long tot=((long long)n*(n-1)*(n-2))/6;
    96         printf("%.7lf
    ",1.0*cnt/tot);
    97     }
    98     return 0;
    99 }
    尽最大的努力,做最好的自己!
  • 相关阅读:
    项目结束后一点心得
    提交disabled按钮的几种方法
    发现VS2005一个BUG
    单一文件上传防止粘帖及格式限制
    MessageBox.Show常用的2个方法
    一点感受一点体会
    EXCEL导入GridView,然后再汇入数据库.
    2根ECC内存
    (转载)gridview添加删除确认对话框
    反射调用Method
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5518143.html
Copyright © 2011-2022 走看看