zoukankan      html  css  js  c++  java
  • 水题:HDU 5119 Happy Matt Friends

    Matt has N friends. They are playing a game together.

    Each of Matt’s friends has a magic number. In the game, Matt selects some (could be zero) of his friends. If the xor (exclusive-or) sum of the selected friends’magic numbers is no less than M , Matt wins.

    Matt wants to know the number of ways to win.
     

    Input

    The first line contains only one integer T , which indicates the number of test cases.

    For each test case, the first line contains two integers N, M (1 ≤ N ≤ 40, 0 ≤ M ≤ 106).

    In the second line, there are N integers ki (0 ≤ ki ≤ 106), indicating the i-th friend’s magic number.
     

    Output

    For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y indicates the number of ways where Matt can win.
     

    Sample Input

    2
    3 2
    1 2 3
    3 3
    1 2 3

    Sample Output

    Case #1: 4
    Case #2: 2

    Hint

    In the first sample, Matt can win by selecting: friend with number 1 and friend with number 2. The xor sum is 3. friend with number 1 and friend with number 3. The xor sum is 2. friend with number 2. The xor sum is 2. friend with number 3. The xor sum is 3. Hence, the answer is 4.
      水DP。
     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 using namespace std;
     5 const int Max=1050000;
     6 int dp[2][Max],n,M;
     7 int main(){
     8     int T,cas=0;
     9     long long ans,tot,x;
    10     scanf("%d",&T);
    11     while(T--){
    12         scanf("%d%d",&n,&M);
    13         memset(dp,0,sizeof(dp));
    14         dp[0][0]=1;int now,pre;
    15         for(int i=1;i<=n;i++){
    16             scanf("%lld",&x);now=i%2,pre=now^1;
    17             memset(dp[now],0,sizeof(dp[now]));
    18             for(int j=0;j<Max;j++){
    19                 if((j^x)<Max)dp[now][j]+=dp[pre][j^x];
    20                 dp[now][j]+=dp[pre][j];
    21             }
    22         }
    23         ans=0;
    24         for(int i=0;i<M;i++)ans+=dp[now][i];
    25         tot=1;x=2;
    26         while(n){
    27             if(n&1)tot=tot*x;
    28             n>>=1;x=x*x;
    29         }
    30         printf("Case #%d: %lld
    ",++cas,tot-ans);    
    31     }
    32     return 0;
    33 }
  • 相关阅读:
    程序员的私人外包专家
    目录
    Autumoon Code Library 2008 Beta版 重新发布
    为您的开发团队找个好管家
    .NET编程利器:Reflector for .NET
    3. Extension Methods(扩展方法)
    1. C# 3.0简介
    4. Lambda Expressions (Lambda表达式)与Expressions Tree(表达式树)
    7. Query Expressions(查询表达式)
    6. Anonymous Types(匿名类型)
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5943501.html
Copyright © 2011-2022 走看看