zoukankan      html  css  js  c++  java
  • LeetCode:Largest Rectangle in Histogram

    题目链接

    Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

    Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

    The largest rectangle is shown in the shaded area, which has area = 10 unit.

    For example,
    Given height = [2,1,5,6,2,3],
    return 10.                                                                                                        本文地址

    分析:最暴力的方法就是枚举所有区间的最大矩形值,然后选择最大的。可以通过分别枚举区间右边界和区间左边界,时间复杂度O(n^2)这样做大数据会超时。枚举的过程中可以优化一下:可以很容易理解,如果height[i+1] > height[i] 那么区间[k…i]内的最大矩形肯定不会超过区间[k…i+1]内的最大矩形,比如上例中的区间[0…3]内的矩形要大于[0…2]内的矩形,因为height[3] > height[2]。因此我们在枚举区间右边界时,只选择那些height上升区间的最大值处作为右边界(比如例子中的2 、6 、3)。优化后可以通过leetcode的大数据,虽然做了优化,但是时间复杂度还是O(n^2),代码如下:

    class Solution {
    public:
        int largestRectangleArea(vector &height) {
            // IMPORTANT: Please reset any member data you declared, as
            // the same Solution instance will be reused for each test case.
            int len = height.size(),res = 0;
            int rBorder = 0; //每次选择递增序列的最大值作为右边界
            while(rBorder < len)
            {
                if(rBorder + 1 < len && height[rBorder+1] >= height[rBorder])rBorder++;
                else
                {//找到了右边界
                    int minVal = height[rBorder];
                    //枚举左边界
                    for(int lBorder = rBorder; lBorder >= 0; lBorder--)
                    {
                        if(minVal > height[lBorder])
                            minVal = height[lBorder];
                        int tmpArea = minVal * (rBorder - lBorder + 1);
                        if(res < tmpArea)res = tmpArea;
                    }
                    rBorder++;
                }
            }
            return res;
        }
    };

    网上找到了一种O(n)的解法,非常巧妙,通过栈来维护height数组中递增的索引,具体可以参考这篇博客,这里只贴上代码:

    class Solution {
    public:
        int largestRectangleArea(vector<int> &height) {
            // IMPORTANT: Please reset any member data you declared, as
            // the same Solution instance will be reused for each test case.
            height.push_back(0);//数组末尾插入dummy元素0
            int len = height.size(),res = 0;
            stack<int> S;//注意栈内保存的是数组height的下标索引
            for (int i = 0; i < len; i++) 
            {
                 if (S.empty() || height[i] > height[S.top()]) S.push(i);
                 else 
                 {
                     int tmp = S.top();
                     S.pop();
                     res = max(res, height[tmp] * (S.empty() ? i : i-S.top()-1));
                     i--;
                 }
            }
            height.pop_back();//删除dummy
            return res;
        }
    };

    【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3454634.html

  • 相关阅读:
    web开发(六) EL表达式
    web开发(五) JSP详解(四大作用域九大内置对象等)
    web开发(四) 一次性验证码的代码实现
    Netty4
    Android Fragment
    Android 6.0 双向通话自动录音
    安卓
    SpringMVC + Spring + Mybatis+ Redis +shiro以及MyBatis学习
    Spring 3 AOP 概念及完整示例
    Java并发之CountDownLatch、CyclicBarrier和Semaphore
  • 原文地址:https://www.cnblogs.com/TenosDoIt/p/3454634.html
Copyright © 2011-2022 走看看