zoukankan      html  css  js  c++  java
  • LeetCode:Climbing Stairs(编程之美2.9-斐波那契数列)

    题目链接

    You are climbing a stair case. It takes n steps to reach to the top.

    Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?


    算法1:分析:dp[i]为爬到第i个台阶需要的步数,那么dp[i] = dp[i-1] + dp[i-2], 很容易看出来这是斐波那契数列的公式                                        本文地址

    class Solution {
    public:
        int climbStairs(int n) {
            int fbn1 = 0, fbn2 = 1;
            for(int i = 1; i <= n; i++)
            {
                int tmp = fbn1 + fbn2;
                fbn1 = fbn2;
                fbn2 = tmp;
            }
            return fbn2;
        }
    };

    算法2:还可以根据斐波那契数列的通项公式来求,对于斐波那契数列 1 1 2 3 5 8 13 21,通项公式如下,这个方法有个缺陷是:使用了浮点数,但是浮点数精度有限, oj中n应该不大,所以可以通过(当 N>93 时 第N个数的值超过64位无符号整数可表示的范围)

    image

    具体推导请参考百度百科

    class Solution {
    public:
        int climbStairs(int n) {
            //根据斐波那契数列的通项公式
            double a = 1/sqrt(5);
            double b = (1 + sqrt(5)) / 2;
            double c = (1 - sqrt(5)) / 2;
            return (int)round(a * (pow(b, n+1) - pow(c, n+1)));
        }
    };

    算法3:”编程之美2.9-斐波那契数列“ 中提到了一种logn的算法(实际上利用了幂运算的logn算法),在n比较大时,会高效很多。首先给出本题代码,然后直接截图书上的描述。如果n较大,就需要编写大整数类了

     1     struct matrix22
     2     {
     3         int v11,v12,v21,v22;
     4         matrix22(int a,int b,int c,int d)
     5         {
     6             v11 = a; v12 = b; v21 = c; v22 = d;
     7         }
     8         matrix22(){}
     9     };
    10     matrix22 matMult(const matrix22 &a, const matrix22 &b)//矩阵乘法
    11     {
    12         matrix22 res;
    13         res.v11 = a.v11*b.v11 + a.v12*b.v21;
    14         res.v12 = a.v11*b.v12 + a.v12*b.v22;
    15         res.v21 = a.v21*b.v11 + a.v22*b.v21;
    16         res.v22 = a.v21*b.v12 + a.v22*b.v22;
    17         return res;
    18     }
    19     matrix22 matPow(const matrix22 &a, int exp)//矩阵求幂
    20     {
    21         matrix22 res(1,0,0,1);//初始化结果为单位矩阵
    22         matrix22 tmp = a;
    23         for(; exp; exp >>= 1)
    24         {
    25             if(exp & 1)
    26                 res = matMult(res, tmp);
    27             tmp = matMult(tmp, tmp);
    28         }
    29         return res;
    30     }
    31 
    32 class Solution {
    33 public:
    34     int climbStairs(int n) {
    35         matrix22 A(1,1,1,0);
    36         A = matPow(A, n-1);
    37         return A.v11 + A.v21;
    38     }
    39 };
    40 
    41     

    【版权声明】转载请注明出处http://www.cnblogs.com/TenosDoIt/p/3465356.html

  • 相关阅读:
    day02_1spring3
    day01_2spring3
    动态代理的介绍
    day04_1hibernate
    day03_2hibernate
    Oracle11gR2安装完成后不手动配置监听的使用方法
    css的样式和选择符的优先权
    调用css时,link和@import url的区别
    jquery 获取和修改img标签的src属性
    正则表达式实现6-10位密码由数字和字母混合组成
  • 原文地址:https://www.cnblogs.com/TenosDoIt/p/3465356.html
Copyright © 2011-2022 走看看