zoukankan      html  css  js  c++  java
  • 【网络流】最小点权覆盖集、最大点权独立集

    目录

    简介
    解法
    模板题及代码

    简介

    最小点权覆盖集问题指的是:在图中选取一些点,满足图中每条边连接的两个点中,至少一个被选择,求所选取的点最小权值和。

    最大点权独立集问题是最小点权覆盖集问题的对偶问题,指的是:在图中选取一些点,满足:图中每条边连接的两个点中,至多一个被选择,求所选取的点最大权值和。

    对于一般图而言,这两个问题是 (NPC) 问题,因此我们着重讨论二分图情况的解法。

    解法

    因为两个问题是对偶的,所以我们只需解决最小点权覆盖集问题,下为解法:

    构建流网络 (G_N)

    • 对原图 (G) 二分染色,简便起见,记点的颜色为白点、黑点。
    • 建立源点 (s)(s) 向白点连接容量为相应点权值的边。
    • 类似地,黑点向汇点 (t) 连接容量为相应点权值的边。
    • 图中原有的边连接容量(∞) 的边。

    在流网络 (G_N) 上跑一遍最小割就可以求出答案了。

    正确性简证:对于任意一条从 (s)(t) 的路径,一定存在一条边被割断,而且因为原图对应的边容量为 (∞) ,因此割边必然存在于 (s) 与白点之间或者黑点与 (t) 之间,对应的流量便是选取的最小点权。

    至于最大点权独立集问题则可以迎刃而解,因为点权覆盖集对于 (G) 的点集 (V)补集即为点权独立集,而点集 (V) 的点权之和为常数,所以当点权覆盖集最小时,点权独立集最大,对应的答案即为 (V) 的点权之和减去最小点权覆盖集的点权之和。

    模板题及代码

    传送门:

    最小点权覆盖集问题

    https://www.acwing.com/activity/content/problem/content/2649/1/

    分析

    因为对于每条边,射出这条边的点以及被这条边射入的点至少有一个被选取,因此想到拆点,然后转化为最小点权覆盖集问题。

    代码
    #include<bits/stdc++.h>
    using namespace std;
    
    const int N=205, M=5000+200+10<<1, INF=0x3f3f3f3f;
    
    int n, m, S, T;
    struct node{
    	int to, c, next;
    }e[M];
    
    int w[N];
    int h[N], tot;
    
    void add(int u, int v, int c){
    	e[tot].to=v, e[tot].c=c, e[tot].next=h[u], h[u]=tot++;
    	e[tot].to=u, e[tot].c=0, e[tot].next=h[v], h[v]=tot++;
    }
    
    int q[N], d[N], cur[N];
    bool bfs(){
    	memset(d, -1, sizeof d);
    	int tt=-1, hh=0;
    	q[++tt]=S, d[S]=0, cur[S]=h[S];
    	
    	while(tt>=hh){
    		int hd=q[hh++];
    		for(int i=h[hd]; ~i; i=e[i].next){
    			int go=e[i].to;
    			if(d[go]==-1 && e[i].c){
    				d[go]=d[hd]+1;
    				cur[go]=h[go];
    				if(go==T) return true;
    				q[++tt]=go;
    			}
    		}
    	}
    	return false;
    }
    
    int find(int u, int limit){
    	if(u==T) return limit;
    	int flow=0;
    	for(int i=cur[u]; ~i && limit>flow; i=e[i].next){
    		int go=e[i].to;
    		cur[u]=i;
    		if(d[go]==d[u]+1 && e[i].c){
    			int t=find(go, min(e[i].c, limit-flow));
    			if(!t) d[go]=-1;
    			e[i].c-=t, e[i^1].c+=t, flow+=t;
    		}
    	}
    	return flow;
    }
    
    int dinic(){
    	int res=0, flow;
    	while(bfs()) while(flow=find(S, INF)) res+=flow;
    	return res;
    }
    
    bool vis[N];
    void dfs(int u){
    	vis[u]=true;
    	for(int i=h[u]; ~i; i=e[i].next){
    		int go=e[i].to;
    		if(e[i].c && !vis[go]) dfs(go);
    	}
    }
    
    int main(){
    	memset(h, -1, sizeof h);
    	cin>>n>>m;
    	
    	for(int i=n+1; i<=2*n; i++) cin>>w[i];
    	for(int i=1; i<=n; i++) cin>>w[i];
    	
    	S=0, T=2*n+1;
    	while(m--){
    		int u, v; cin>>u>>v;
    		add(u, v+n, INF);
    	}
    	
    	for(int i=1; i<=n; i++) add(S, i, w[i]);
    	for(int i=n+1; i<=2*n; i++) add(i, T, w[i]);
    	
    	cout<<dinic()<<endl;
    	dfs(S);
    	
    	int cnt=0;
    	for(int i=0; i<tot; i+=2){
    		int u=e[i^1].to, v=e[i].to;
    		if(vis[u] && !vis[v]) cnt++;
    	}
    	
    	cout<<cnt<<endl;
    	for(int i=0; i<tot; i+=2){
    		int u=e[i^1].to, v=e[i].to;
    		if(vis[u] && !vis[v] && u==S) cout<<v<<' '<<'-'<<endl;
    		else if(vis[u] && !vis[v] && v==T) cout<<u-n<<' '<<'+'<<endl;
    	}
    	return 0;
    }
    

    最大点权独立集问题

    https://www.acwing.com/activity/content/problem/content/2650/1/

    分析

    按照格子的行列坐标和的奇偶性将格子染成黑白,构造出一个二分图,将黑白格子看成是黑白点,可知黑白点之间的连边对应的两个点至多选取一个,转化为最大点权独立集问题解决。

    代码
    #include<bits/stdc++.h>
    using namespace std;
    
    const int N=100*100+10, M=4*N+200+10<<1, INF=0x3f3f3f3f;
    
    int n, m, S, T;
    struct node{
    	int to, c, next;
    }e[M];
    
    int h[N], tot;
    
    void add(int u, int v, int c){
    	e[tot].to=v, e[tot].c=c, e[tot].next=h[u], h[u]=tot++;
    	e[tot].to=u, e[tot].c=0, e[tot].next=h[v], h[v]=tot++;
    }
    
    int q[N], d[N], cur[N];
    bool bfs(){
    	memset(d, -1, sizeof d);
    	int tt=-1, hh=0;
    	q[++tt]=S, d[S]=0, cur[S]=h[S];
    	
    	while(tt>=hh){
    		int hd=q[hh++];
    		for(int i=h[hd]; ~i; i=e[i].next){
    			int go=e[i].to;
    			if(d[go]==-1 && e[i].c){
    				d[go]=d[hd]+1;
    				cur[go]=h[go];
    				if(go==T) return true;
    				q[++tt]=go;
    			}
    		}
    	}
    	return false;
    }
    
    int find(int u, int limit){
    	if(u==T) return limit;
    	int flow=0;
    	for(int i=cur[u]; ~i && limit>flow; i=e[i].next){
    		int go=e[i].to;
    		cur[u]=i;
    		if(d[go]==d[u]+1 && e[i].c){
    			int t=find(go, min(e[i].c, limit-flow));
    			if(!t) d[go]=-1;
    			e[i].c-=t, e[i^1].c+=t, flow+=t;
    		}
    	}
    	return flow;
    }
    
    int dinic(){
    	int res=0, flow;
    	while(bfs()) while(flow=find(S, INF)) res+=flow;
    	return res;
    }
    
    int id[105][105], cnt;
    
    int main(){
    	memset(h, -1, sizeof h);
    	cin>>n>>m;
    	
    	for(int i=1; i<=n; i++) for(int j=1; j<=m; j++) id[i][j]=++cnt;
    	
    	S=0, T=cnt+1;
    	int all=0;
    	int dx[]={1, 0, -1, 0}, dy[]={0, 1, 0, -1};
    	for(int i=1; i<=n; i++) for(int j=1; j<=m; j++){
    		int w; cin>>w; all+=w;
    		if(i+j&1){
    			add(S, id[i][j], w);
    			for(int k=0; k<4; k++){
    				int kx=i+dx[k], ky=j+dy[k];
    				if(kx<1 || kx>n || ky<1 || ky>m) continue;
    				add(id[i][j], id[kx][ky], INF);
    			}
    		}else add(id[i][j], T, w);
    	}
    	
    	cout<<all-dinic()<<endl;
    	
    	return 0;
    }
    
  • 相关阅读:
    你真的理解正则修饰符吗?
    一个简单易用的容器管理平台-Humpback
    【译】参考手册-React组件
    【译】快速起步-组件与属性
    css可应用的渐进增强新特性
    javascript编程杂记
    ES6模块的import和export用法总结
    对于未来chrome80 samesite问题的兼容解决方案
    mogodb数据库简单的权限分配
    egg.js npm start 启动报错
  • 原文地址:https://www.cnblogs.com/Tenshi/p/14747496.html
Copyright © 2011-2022 走看看