zoukankan      html  css  js  c++  java
  • poj 3691 DNA repair

    DNA repair
    Time Limit: 2000MS   Memory Limit: 65536K
         

    Description

    Biologists finally invent techniques of repairing DNA that contains segments causing kinds of inherited diseases. For the sake of simplicity, a DNA is represented as a string containing characters 'A', 'G' , 'C' and 'T'. The repairing techniques are simply to change some characters to eliminate all segments causing diseases. For example, we can repair a DNA "AAGCAG" to "AGGCAC" to eliminate the initial causing disease segments "AAG", "AGC" and "CAG" by changing two characters. Note that the repaired DNA can still contain only characters 'A', 'G', 'C' and 'T'.

    You are to help the biologists to repair a DNA by changing least number of characters.

    Input

    The input consists of multiple test cases. Each test case starts with a line containing one integers N (1 ≤ N ≤ 50), which is the number of DNA segments causing inherited diseases.
    The following N lines gives N non-empty strings of length not greater than 20 containing only characters in "AGCT", which are the DNA segments causing inherited disease.
    The last line of the test case is a non-empty string of length not greater than 1000 containing only characters in "AGCT", which is the DNA to be repaired.

    The last test case is followed by a line containing one zeros.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by the
    number of characters which need to be changed. If it's impossible to repair the given DNA, print -1.

    Sample Input

    2
    AAA
    AAG
    AAAG    
    2
    A
    TG
    TGAATG
    4
    A
    G
    C
    T
    AGT
    0

    Sample Output

    Case 1: 1
    Case 2: 4
    Case 3: -1

    Source

     
    题意:

    给出n个模式串,和一个长度为m的原串,求最少修改几位,使得其中不包含任何一个模式串为子串

    字母只有AGCT

    dp[i][j]表示已经修改好了前i位u,当前在AC自动机的j节点,且前i位不包含任何一个模式串位子串的最小修改次数

    不改,dp[i][j]=dp[i+1][k]

    改 ,dp[i][j]=dp[i+1][k]+1

    取min

    如果dp[i+1][k]是单词节点就不能转移

    记忆化搜索即可

    #include<queue>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    int n,len,root,id,ans;
    char s[1001];
    bool mark[51*21],v[1001][51*21];
    int trie[51*21][5],tot,f[51*21],dp[1001][51*21];
    queue<int>q;
    struct ACautomata
    {
        int get(char c)
        {
            if(c=='A') return 0;
            if(c=='G') return 1;
            if(c=='C') return 2;
            if(c=='T') return 3;
        }
        void insert()
        {
            root=1;
            len=strlen(s);
            for(int i=0;i<len;i++)
            {
                id=get(s[i]);
                if(!trie[root][id]) 
                {
                    trie[root][id]=++tot;
                    memset(trie[tot],0,sizeof(trie[tot]));
                    mark[tot]=0;
                }
                root=trie[root][id];
            }
            mark[root]=true;
        }
        void getfail()
        {
            memset(f,0,sizeof(f));
            q.push(1);
            int now,j;
            while(!q.empty())
            {
                now=q.front(); q.pop();
                for(int i=0;i<4;i++)
                {
                    if(!trie[now][i])
                    {
                        trie[now][i]=trie[f[now]][i];
                        continue;
                    }
                    q.push(trie[now][i]);
                    j=f[now];
                    f[trie[now][i]]=trie[j][i];
                    if(mark[trie[j][i]]) mark[trie[now][i]]=true;
                }
            }
        }
        int dfs(int l,int now)
        {
            if(l==len) return 0;
            if(v[l][now]) return dp[l][now];
            v[l][now]=true;
            if(!mark[trie[now][get(s[l+1])]]) 
              dp[l][now]=dfs(l+1,trie[now][get(s[l+1])]);
            else dp[l][now]=2000;
            for(int i=0;i<4;i++)
             if(!mark[trie[now][i]]&&i!=get(s[l+1]))  
               dp[l][now]=min(dp[l][now],dfs(l+1,trie[now][i])+1);
            return dp[l][now];
        }
    };
    ACautomata AC;
    int main()
    {
        for(int i=0;i<4;i++) trie[0][i]=1;
        int t=0;
        while(scanf("%d",&n)!=EOF)
        {
            if(!n) return 0;
            tot=1;
            memset(v,0,sizeof(v));
            memset(trie[1],0,sizeof(trie[1]));
            memset(dp,0,sizeof(dp));
            while(n--)
            {
                scanf("%s",s);
                AC.insert();
            }
            AC.getfail();
            scanf("%s",s+1);
            len=strlen(s+1);
            ans=AC.dfs(0,1);
            if(ans==2000) ans=-1;
            printf("Case %d: %d
    ",++t,ans);
        }
    }
  • 相关阅读:
    Linux开发环境必备十大开发工具
    mysql executemany与 insert ... ON DUPLICATE KEY UPDATE 一起使用
    python LD_LIBRARY_PATH 靠谱解决办法
    搭建简单ftp,满足windows和ubuntu共享文件
    用类方法作为装饰器装饰同属于本类的另一个方法
    通过类方法名调用类方法
    java将jpg文件转化为base64字节(互转)
    CSS元素居中的方式
    T-SQL语法学习一(持续更新)
    SVN的使用教程(一)
  • 原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/6970800.html
Copyright © 2011-2022 走看看