zoukankan      html  css  js  c++  java
  • hdu 3507 Print Article

    http://acm.hdu.edu.cn/showproblem.php?pid=3507

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)

    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5
    5
    5
    9
    5
    7
    5
     
    Sample Output
    230
     
    斜率优化
    把斜率转化为乘积的形式,避免浮点数误差
    #include<cstdio>
    #include<cstring>
    #define N 500001
    using namespace std;
    typedef long long LL;
    LL sum[N],dp[N];
    int c,q[N],head,tail; 
    long long up(int k,int j) 
    {
        return dp[j]-dp[k]-sum[k]*sum[k]+sum[j]*sum[j];
    }
    long long down(int k,int j)
    {
        return 2*(sum[j]-sum[k]);
    }
    int main()
    {
        int n,m,x;
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            memset(sum,0,sizeof(sum));
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&x);
                sum[i]=sum[i-1]+x;
            }
            head=tail=0;
            memset(q,0,sizeof(q));
            memset(dp,0,sizeof(dp));
            for(int i=1;i<=n;i++)
            {
                while(head<tail && up(q[head],q[head+1])<=sum[i]*down(q[head],q[head+1])) head++;
                dp[i]=dp[q[head]]+m+(sum[i]-sum[q[head]])*(sum[i]-sum[q[head]]);
                while(head<tail && up(q[tail-1],q[tail])*down(q[tail],i)>=up(q[tail],i)*down(q[tail-1],q[tail])) tail--;
                q[++tail]=i;
            }
            printf("%lld
    ",dp[n]);
        }
    }
  • 相关阅读:
    UWP 常用文件夹
    UWP 判断Windows10系统版本
    UWP 图片缩放
    Windows 10「设置」应用完整MS-Settings快捷方式汇总
    UWP 用Thumb 控件仿制一个可拖动悬浮 Button
    【mp3】洗脑循环了!龙珠超 自在极意功 【究极の圣戦】串田アキラ 背景纯音乐
    工作三年后的总结
    css3 移动端 开关效果
    js 移动端上拉加载下一页通用方案
    【我的上传番剧/电影】收藏夹
  • 原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/7479606.html
Copyright © 2011-2022 走看看