zoukankan      html  css  js  c++  java
  • 区间dp与环形dp

    区间dp

    常见题型

    求区间[1,n]XXXXX后的最大/小值,一般分为无要求或只能/最多分成m段两类

    做法

    如对分段无要求,设dp[i][j]表示序列中[i,j]的最值,最外层循环区间长度,第二层循环左端点,并能确定右端点,第三层枚举断点;

    for(rint len = 1;len <= n; ++len) {//如果对len == 1初始化了可从2枚举
    	for(rint i = 1,j = i + len - 1;j <= n;++i,++j) {
    		for(rint k = i;k < j; ++k) {//把序列分成[i,k],[k+1,j];
    			.......;
    		}
    	}
    }
    

    环形dp

    常见题型

    求首尾相接的区间[1,n]XXXXX后的最大/小值;

    做法

    可拆链转化为区间dp求解

    转化方法

    对输入的原区间复制一遍接到序列后,则该2n区间任意长为n的区间为原环断开的一种链。

    合并石子

    非常基础的模板题

    #include <iostream>
    #include <cstdio>
    #include <queue>
    #include <stack>
    #include <cmath>
    #include <map>
    #include <cstring>
    #include <algorithm>
    #define ll long long
    #define rint register int
    #define lson (x << 1)
    #define rson (x << 1 | 1)
    #define mid ((st[x].l + st[x].r) >> 1)
    using namespace std;
    template <typename xxx>
    inline void read(xxx &x) {
        x = 0;
        int f = 1;
        char c = getchar();
        while (c < '0' || c > '9') {
            if (c == '-')
                f = -1;
            c = getchar();
        }
        while (c <= '9' && c >= '0') {
            x = (x << 1) + (x << 3) + (c ^ 48);
            c = getchar();
        }
        x *= f;
    }
    template <typename xxx>
    inline void print(xxx x) {
        if (x < 0) {
            x = -x;
            putchar('-');
        }
        if (x > 9)
            print(x / 10);
        putchar(x % 10 + '0');
    }
    const int N = 300100;
    const int mod = 100003;
    const int maxn = 100100;
    const int inf = 0x7fffffff;
    const int key = 131;
    const double eps = 1e-9;
    int n;
    ll a[444];
    ll sum[444];
    ll dp[444][444];
    ll f[444][444];
    int main() {
    	ll ans=0,fk=1e15;
    	read(n);
    	for(rint i=1;i<=n;++i) read(a[i]),a[i+n]=a[i];
    	for(rint i=1;i<=(n<<1);++i) 
    	{
    		sum[i]=sum[i-1]+a[i];
    		for(rint j=i;j<=(n<<1);++j) 
    			if(j^i) f[i][j]=1e15;
    	}
    	for(rint len=1;len<n;++len)
    	{
    		for(rint i=1;i<=(n<<1);++i)
    		{
    			rint j=i+len;
    			for(rint k=i;k<j;++k)
    			{
    				dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]);
    				f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+sum[j]-sum[i-1]);
    			}
    		}
    	}
    	for(rint i=1;i<=n;++i)
    	{
    		ans=max(dp[i][i+n-1],ans);
    		fk=min(f[i][i+n-1],fk);
    	} 
    	print(fk);putchar('
    ');print(ans);
    }
    /*
    
    */
    

    数字游戏

    也是十分基础有限制的基础水题说明我是个水题都做不来的垃圾

    有限制的话多开一维dp[i][j][h]表示[i,j]分为h段的最值;最外两层不变,第三层枚举段数h(本题预处理的h == 1所以从2开始),第四层枚举断点k,范围是[i + h - 1,j - 1];

    本题最开始我把sum[]放在初始化dp的双重循环中更新,没有发现初始化需要用到还未更新的sum[],因此错了半天

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <queue>
    #include <map>
    #include <cstring>
    #include <algorithm>
    #define rint register int
    #define ll long long
    using namespace std;
    template <typename xxx> inline void read(xxx &x)
    {
    	int f = 1;x = 0;
    	char c = getchar();
    	for(; c < '0' || c > '9' ; c = getchar()) if(c=='-') f = -1;
    	for(;'0' <= c && c <= '9'; c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48);
    	x *= f;
    }
    template <typename xxx> inline void print(xxx x)
    {
    	if(x < 0) {
    		putchar('-');
    		x = -x;
    	}
    	if(x > 9) print(x/10);
    	putchar(x % 10 + '0');
    }
    const int inf = 0x7fffffff;
    const int maxn = 100100;
    const int mod = 1e9+7;
    int n,m,n2;
    int a[111];
    int sum[111]; 
    int f1[111][111][111];// 区间[l,r]分成h段最大 
    int f2[111][111][111];//最小 
    inline int deal(int x) {
    	return (x % 10 + 10) % 10;
    }
    int main()
    {
    	read(n);read(m);n2 = (n<<1);	
    	for(rint i = 1;i <= n; ++i) {
    		read(a[i]);
    		a[i] = (a[i]%10 + 10)%10;
    		a[i + n] = a[i];
    		sum[i] = sum[i - 1] + a[i]; 
    	}
    	for(rint i = 1;i <= n; ++i) sum[i + n] = sum[i] + sum[n];
    	memset(f2,0x3f,sizeof(f2));
    	for(rint i = 1;i <= n2; ++i) 
    		for(rint j = i;j <= n2; ++j) 
    			f1[i][j][1] = f2[i][j][1] = deal(sum[j] - sum[i - 1]); 
    	for(rint len = 1;len <= n; ++len) {
    		for(rint i = 1,j = i + len - 1;j <= n2; ++i,++j) {
    			for(rint h = 2;h <= m; ++h) {
    				for(rint k = i + h - 2;k < j; ++k) {
    					f1[i][j][h] = max(f1[i][j][h],f1[i][k][h - 1] * deal(sum[j] - sum[k]));
    					f2[i][j][h] = min(f2[i][j][h],f2[i][k][h - 1] * deal(sum[j] - sum[k]));
    				}
    			}
    		}
    	}
    	int maxx = 0,minn = 0x3f3f3f3f;
    	for(rint i = 1;i <= n; ++i) {
    		maxx = max(maxx,f1[i][i + n - 1][m]);
    		minn = min(minn,f2[i][i + n - 1][m]);
    	}
    	print(minn);putchar('
    ');print(maxx);
    }
    /*
    */
    
  • 相关阅读:
    微服务之集成(四)
    后缀数组
    HDU-6514 Monitor(二维前缀和+差分)
    前缀和、二维前缀和与差分
    2019年icpc上海网络赛 B Light bulbs (分块、差分)
    树状数组
    2019ICPC 上海网络赛 L. Digit sum(二维树状数组+区间求和)
    [USACO09MAR]向右看齐Look Up(单调栈、在线处理)
    Pay Back(模拟)
    [USACO09MAR]Moon哞哞叫Moon Mooing(模拟)
  • 原文地址:https://www.cnblogs.com/Thomastine/p/11739210.html
Copyright © 2011-2022 走看看