zoukankan      html  css  js  c++  java
  • [计蒜之道2019 复赛 A]外教 Michale 变身大熊猫

    [计蒜之道2019 复赛 A]外教 Michale 变身大熊猫

    Online Judge2019计蒜之道 复赛 A

    Label:LIS+线段树、树状数组+快速幂(模逆元)

    题目描述

    题解:

    pre.关于本题中模逆元的提示:

    对于一个质数mod,q的模逆元是(q^{mod-2})。也就是说对于本题,平时一般用形如(G=frac{p}{q})的分式表示概率,现在,我们利用模逆元来表示这个概率,即(G=p*q^{mod-2})

    那这道题里(mod=998244353)是个质数,那就可以利用上面的提示(G=p*q^{mod-2}),很明显要用到快速幂,而这个(q)就是LIS的个数,那我们只要求每个位置对应的p即可。

    ①.70%数据的(O(N^2))做法:

    想到LIS的O(NlogN)做法——用树状数组或线段树维护前缀最小值优化一下dp。然后可以求出最大上升子序列的长度mal ,接着分别从左到右,再从右到左求一下每个点会在几条LIS上,然后左右的方案数乘一下就是p了。预处理很明显要先离散化一下。离线赛时的70分代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define int long long
    typedef long long ll;
    const int N=1e5+10;
    const int mod=998244353;
    int r[N],l[N];
    int qsm(int x,int b){
        int res=1;
        while(b){
            if(b&1)res=1LL*res*x%mod;
            x=1LL*x*x%mod;
            b>>=1;
        }
        return res;
    }
    int B[N];
    int n,num,a[N],b[N],dp[N];
    int lowbit(int x){return x&-x;}
    void update(int x,int d){
    	while(x<=num)B[x]=max(B[x],d),x+=lowbit(x);
    }
    int query(int x){
    	int res=0;
    	while(x)res=max(res,B[x]),x-=lowbit(x);
    	return res;
    }
    int cnt[N],all;
    signed main(){
    //	freopen("lis.in","r",stdin),freopen("lis.out","w",stdout);
    	scanf("%lld",&n);
    	for(int i=1;i<=n;i++)scanf("%lld",&a[i]),b[i]=a[i];
    	sort(b+1,b+n+1);
    	num=unique(b+1,b+n+1)-b-1;
    	for(int i=1;i<=n;i++)a[i]=lower_bound(b+1,b+num+1,a[i])-b;
    	int mal=0;
    	for(int i=1;i<=n;i++){
    		int now=query(a[i]-1);
    		dp[i]=now+1;
    		if(dp[i]>mal)mal=dp[i];	
    		update(a[i],dp[i]);
    	}
    	a[0]=0,dp[0]=0,l[0]=1;
    	a[n+1]=num+1,dp[n+1]=mal+1,r[n+1]=1;n++;	
    	for(int i=0;i<=n;i++){
    		for(int j=i+1;j<=n;j++){
    			if((dp[j]!=dp[i]+1)||a[j]<=a[i])continue;
    			l[j]=(l[j]+l[i])%mod;		
    		}
    	}	
    	for(int i=n;i>=0;i--){
    		for(int j=i-1;j>=0;j--){
    			if((dp[j]!=dp[i]-1)||a[j]>=a[i])continue;
    			r[j]=(r[j]+r[i])%mod;		
    		}	
    	}	
    	int all=l[0]*r[0]%mod,q=qsm(all,mod-2);
    	for(int i=1;i<n;i++)printf("%lld ",r[i]*l[i]%mod*q%mod);
    }
    

    ②.(O(NlogN))正解

    上面的代码也可以优化,但是我们可以直接在求LIS时候维护方案数。

    也是一样的思路,从左到右扫一遍,再从右到左扫一遍,然后乘一下得到方案数。然后下面代码利用树状数组维护到目前为止,以离散化后的数字i结尾的LIS最长为(c[i]),以及,以其结尾的LIS这么长有(ti[i])条。

    由于一次从左到右,一次从右到左,所以打两组树状数组。大致思路同上面的代码:

    //快速幂->模逆元,树状数组、线段树维护 
    #include<bits/stdc++.h>
    using namespace std;
    #define int long long
    typedef long long ll;
    const int N=1e5+10;
    const int mod=998244353;
    int num,a[N],b[N];
    int dp[N],li[N],ans[N];
    int presum,c[N],ti[N];
    int add1(int x,int mal,int d){
    	while(x<=num){
    		if(mal>c[x])c[x]=mal,ti[x]=d;
    		else if(mal==c[x])ti[x]=(ti[x]+d)%mod; 
    		x+=x&(-x);
    	}
    }
    int sum1(int x){
    	int res=0;
    	while(x){
    		if(res<c[x])res=c[x],presum=ti[x];
    		else if(res==c[x])presum+=ti[x];
    		x-=x&(-x);
    	}
    	return res;
    }
    void add2(int x,int mal,int d){
    	while(x){
    		if(mal>c[x])c[x]=mal,ti[x]=d;
    		else if(mal==c[x])ti[x]=(ti[x]+d)%mod;
    		x-=x&(-x);
    	}
    }
    int sum2(int x){
    	int res=0;
    	while(x<=num){
    		if(res<c[x])res=c[x],presum=ti[x];
    		else if(res==c[x])presum+=ti[x];
            x+=x&(-x);
        }
        return res;
    }
    int ksm(int x,int b){
    	int res=1;
    	while(b){
    		if(b&1)res=res*x%mod;
    		x=x*x%mod;
    		b>>=1;
    	}
    	return res;
    }
    signed main(){
    	int n;scanf("%lld",&n);
    	for(int i=1;i<=n;i++)scanf("%lld",&a[i]),b[i]=a[i];
    	sort(b+1,b+n+1);
    	num=unique(b+1,b+n+1)-b-1;
    	for(int i=1;i<=n;i++)a[i]=lower_bound(b+1,b+num+1,a[i])-b;
    	int lis=0;
    	for(int i=1;i<=n;i++){
    		presum=0;
    		int now=sum1(a[i]-1);presum%=mod;
    		dp[i]=now+1;	
    		lis=max(lis,dp[i]);	
    		if(dp[i]==1)li[i]=1;
    		else li[i]=presum;	
    		add1(a[i],dp[i],li[i]);
    	}
    	memset(c,0,sizeof(c));
    	memset(ti,0,sizeof(ti));
    	int tot=0;
    	for(int i=n;i>=1;i--){
    		presum=0;
    		int now=sum2(a[i]+1);presum%=mod;
    		int ri=(now==0?1:presum);
    		if((dp[i]+now)==lis)ans[i]=li[i]*ri%mod;
    		if(dp[i]==lis)tot=(tot+ans[i])%mod;
    		add2(a[i],now+1,ri);
    	}
    	int q=ksm(tot,mod-2);
    	for(int i=1;i<=n;i++)printf("%lld ",ans[i]*q%mod);
    	return 0;
    }
    
  • 相关阅读:
    windows8安装docker(tool box)
    windows8 使用docker创建第一个nodejs运行环境
    nodejs使用fetch获取WebAPI
    Nodejs获取Azure Active Directory AccessToken
    使用Bot Service创建Bot Framework
    安装Team Services Agent Win7
    Nodejs微信与Bot framework通过Direct Line连接
    修改cmd默认启动路径
    less配置
    javascript滚动到大于一定距离显示隐藏
  • 原文地址:https://www.cnblogs.com/Tieechal/p/11264620.html
Copyright © 2011-2022 走看看