zoukankan      html  css  js  c++  java
  • optim.py-使用tensorflow实现一般优化算法

    optim.py

    Project URL:https://github.com/Codsir/optim.git

    Based on: tensorflow, numpy, copy, inspect

    Why Tensorflow?

    Tensorflow supports symbol computation well like Automatic derivation and the program
    could be excuted with GPU, which will save our time.

    dogleg(p_u, p_b, delta, tau = 2)

    The Dogleg method to solve the subproblems of trust region method

    getGrad(f, x_value)

    Get the gradient of function f with tf.gradients()

        f= lambda x:100*(x[1]-x[0]**2)**2 + (1-x[0])**2
        x_value = [1.0,2.0]
        f_gradients = getGrad(f, x_value)
    

    getHess(f, x_value)

    Get the Hessian matrix of f with tf.hessian

    TrustRegion_dogleg(f, delta = 0.5, eta = 0, *x_0, tolerance= 0.0001)

    Trust region method with subproblems solved by the Dogleg method

    ExactLineSearch_quadratic(f, x_k, p_k)

    Exact line search method when the target function is quadratic

    QuasiNewton(f, *x_0, HUpdateMethod = 'BFGS', LineSearch = ExactLineSearch_quadratic, tolerance = 0.0001)

    quasi-Newton method

    PenaltySimple(f, c_eq, c_leq, epsilon)

    f is the target function, c_eq is a list contains equation constraints,
    c_leq is a list contains unequal constrains, epsilon is the terminal parameter
    these functions could be function name or anonymous functions, which defined by 'lambda'
    The subproblem is solved by Newton Method, but it will be modified in the future because sometimes it's hard to compute the inverse matrix of Hessian matrix.

    Example

    Demo 1:trust region method with subproblems solved by the Dogleg method

        f = lambda x:100*(x[1]-x[0]**2)**2 + (1-x[0])**2
        f.paraLength = 2    ## 这一步不可缺少
        x_k, f_k = TrustRegion_dogleg(f, delta = 10)
    

    Demo 2:quasi-Newton method demo

        print('Demo 2:quasi-Newton method demo')
        f = lambda x:x[0]**2 + 2 * x[1]**2
        f.paraLength = 2
        x_0 = np.array([1, 1])
        x_k, f_k = QuasiNewton(f, x_0)
    

    Demo 3:penalty function method demo

        print('Demo 3:penalty function method demo')
        f = lambda x:x[0] + x[1]
        f.paraLength = 2
        c_eq = [lambda x:x[0]**2 + x[1]**2 - 2]
        c_leq = []
        x_k, f_k = PenaltySimple(f, c_eq, c_leq, [-3,-4])
    
  • 相关阅读:
    Stack
    js this理解
    js面向对象
    自执行函数
    原!struts安全漏洞,由2.3.37版本升级至2.5.22
    原!linux机器 配置自动scp脚本
    转!!记一次使用 Arthas 热更新线上代码
    mysql 修改大表字段,报错ERROR 1878 (HY000): Temporary file write failure. 用pt-online-schema-change
    转!!JAVA Future 模式与 Promise 模式
    转!!linux下详解shell中>/dev/null 2>&1
  • 原文地址:https://www.cnblogs.com/TigerZhang/p/13196363.html
Copyright © 2011-2022 走看看