zoukankan      html  css  js  c++  java
  • optim.py-使用tensorflow实现一般优化算法

    optim.py

    Project URL:https://github.com/Codsir/optim.git

    Based on: tensorflow, numpy, copy, inspect

    Why Tensorflow?

    Tensorflow supports symbol computation well like Automatic derivation and the program
    could be excuted with GPU, which will save our time.

    dogleg(p_u, p_b, delta, tau = 2)

    The Dogleg method to solve the subproblems of trust region method

    getGrad(f, x_value)

    Get the gradient of function f with tf.gradients()

        f= lambda x:100*(x[1]-x[0]**2)**2 + (1-x[0])**2
        x_value = [1.0,2.0]
        f_gradients = getGrad(f, x_value)
    

    getHess(f, x_value)

    Get the Hessian matrix of f with tf.hessian

    TrustRegion_dogleg(f, delta = 0.5, eta = 0, *x_0, tolerance= 0.0001)

    Trust region method with subproblems solved by the Dogleg method

    ExactLineSearch_quadratic(f, x_k, p_k)

    Exact line search method when the target function is quadratic

    QuasiNewton(f, *x_0, HUpdateMethod = 'BFGS', LineSearch = ExactLineSearch_quadratic, tolerance = 0.0001)

    quasi-Newton method

    PenaltySimple(f, c_eq, c_leq, epsilon)

    f is the target function, c_eq is a list contains equation constraints,
    c_leq is a list contains unequal constrains, epsilon is the terminal parameter
    these functions could be function name or anonymous functions, which defined by 'lambda'
    The subproblem is solved by Newton Method, but it will be modified in the future because sometimes it's hard to compute the inverse matrix of Hessian matrix.

    Example

    Demo 1:trust region method with subproblems solved by the Dogleg method

        f = lambda x:100*(x[1]-x[0]**2)**2 + (1-x[0])**2
        f.paraLength = 2    ## 这一步不可缺少
        x_k, f_k = TrustRegion_dogleg(f, delta = 10)
    

    Demo 2:quasi-Newton method demo

        print('Demo 2:quasi-Newton method demo')
        f = lambda x:x[0]**2 + 2 * x[1]**2
        f.paraLength = 2
        x_0 = np.array([1, 1])
        x_k, f_k = QuasiNewton(f, x_0)
    

    Demo 3:penalty function method demo

        print('Demo 3:penalty function method demo')
        f = lambda x:x[0] + x[1]
        f.paraLength = 2
        c_eq = [lambda x:x[0]**2 + x[1]**2 - 2]
        c_leq = []
        x_k, f_k = PenaltySimple(f, c_eq, c_leq, [-3,-4])
    
  • 相关阅读:
    JPA与Hibernate的关系
    EJB里的问题解答
    EJB与JPA的关系
    EJB的魅惑来源
    EJB简介
    MyEclipse如何恢复删掉的文件
    EasyUI的功能树之扁平化
    EasyUI的功能树之异步树
    Spring AOP的日志记录
    简单理解IoC与DI
  • 原文地址:https://www.cnblogs.com/TigerZhang/p/13196363.html
Copyright © 2011-2022 走看看