zoukankan      html  css  js  c++  java
  • Outlets

    Outlets

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2504    Accepted Submission(s): 1160


    Problem Description
    In China, foreign brand commodities are often much more expensive than abroad. The main reason is that we Chinese people tend to think foreign things are better and we are willing to pay much for them. The typical example is, on the United Airline flight, they give you Haagendazs ice cream for free, but in China, you will pay $10 to buy just a little cup.
    So when we Chinese go abroad, one of our most favorite activities is shopping in outlets. Some people buy tens of famous brand shoes and bags one time. In Las Vegas, the existing outlets can't match the demand of Chinese. So they want to build a new outlets in the desert. The new outlets consists of many stores. All stores are connected by roads. They want to minimize the total road length. The owner of the outlets just hired a data mining expert, and the expert told him that Nike store and Apple store must be directly connected by a road. Now please help him figure out how to minimize the total road length under this condition. A store can be considered as a point and a road is a line segment connecting two stores.
     
    Input
    There are several test cases. For each test case: The first line is an integer N( 3 <= N <= 50) , meaning there are N stores in the outlets. These N stores are numbered from 1 to N. The second line contains two integers p and q, indicating that the No. p store is a Nike store and the No. q store is an Apple store. Then N lines follow. The i-th line describes the position of the i-th store. The store position is represented by two integers x,y( -100<= x,y <= 100) , meaning that the coordinate of the store is (x,y). These N stores are all located at different place. The input ends by N = 0.
     
    Output
    For each test case, print the minimum total road length. The result should be rounded to 2 digits after decimal point.
     
    Sample Input
    4
    2 3
    0 0
    1 0
    0 -1
    1 -1
     
    0
     
    Sample Output
    3.41
     
    Source
     
    Recommend
    题意:求最小生成树,p点和q点必须连着
      1 #include <iostream>
      2 #include <cstring>
      3 #include <cstdio>
      4 #include <algorithm>
      5 #include <cmath>
      6 #include <cstdlib>
      7 #include <limits>
      8 #include <queue>
      9 #include <stack>
     10 #include <vector>
     11 #include <map>
     12 
     13 using namespace std;
     14 
     15 #define N 55
     16 #define INF 0xfffffff
     17 #define PI acos (-1.0)
     18 #define EPS 1e-8
     19 #define Lson rt<<1, l, tree[rt].mid ()
     20 #define Rson rt<<1|1, tree[rt].mid () + 1, r
     21 
     22 struct node
     23 {
     24     int x, y;
     25 } P[N];
     26 
     27 int n, vis[N];
     28 
     29 double maps[N][N], dist[N];
     30 
     31 void init()
     32 {
     33     for(int i = 1; i <= n; i++)
     34     {
     35         vis[i] = 0;
     36         for(int j = 1; j <= n; j++)
     37             maps[i][j] = maps[j][i] = INF;
     38         maps[i][i] = 0;
     39     }
     40 }
     41 
     42 int main()
     43 {
     44     int p, q;
     45 
     46     while(scanf("%d", &n), n)
     47     {
     48         init();
     49 
     50         scanf("%d%d", &p, &q);
     51 
     52         for(int i = 1; i <= n; i++)
     53             scanf("%d%d", &P[i].x, &P[i].y);
     54 
     55         int x = abs(P[p].x-P[q].x);
     56         int y = abs(P[p].y-P[q].y);
     57 
     58         double tmp = 1.0*sqrt(x*x+y*y);
     59 
     60         for(int i = 1; i <= n; i++)
     61         {
     62             for(int j = 1; j <= n; j++)
     63             {
     64                 int f = abs(P[i].x-P[j].x), g = abs(P[i].y-P[j].y);
     65 
     66                 maps[i][j] = 1.0*sqrt(f*f+g*g);
     67                 maps[j][i] = maps[i][j];
     68             }
     69         }
     70 
     71         maps[p][q] = maps[q][p] = 0;
     72 
     73         double ans = 0;
     74 
     75         dist[1] = 0;
     76 
     77         for(int i = 1; i <= n; i++)
     78             dist[i] = maps[i][1];
     79 
     80         vis[1] = 1;
     81 
     82         for(int i = 1; i < n; i++)
     83         {
     84             int index;
     85             double  Min = INF;     // double Min, 不知道在这错多少回了
     86             for(int j = 1; j <= n; j++)
     87             {
     88                 if(!vis[j] && dist[j] < Min)
     89                     Min = dist[j], index = j;
     90             }
     91             vis[index] = 1;
     92             ans += Min;
     93             for(int j = 1; j <= n; j++)
     94             {
     95                 if(!vis[j] && dist[j] > maps[j][index])
     96                     dist[j] = maps[j][index];
     97             }
     98         }
     99         printf("%.2f
    ", ans+tmp);
    100     }
    101     return 0;
    102 }
    让未来到来 让过去过去
  • 相关阅读:
    vue动态组件
    服务端渲染和nuxt简单介绍
    nuxt Window 或 Document未定义解决方案
    知乎专栏开放性api
    小程序的一些坑
    搭建微服务器(续)
    调研pwa和sw
    mysql索引原理以及优化
    装饰器
    斐波那契数列和小青蛙跳跳跳问题
  • 原文地址:https://www.cnblogs.com/Tinamei/p/4708076.html
Copyright © 2011-2022 走看看