zoukankan      html  css  js  c++  java
  • Popular Cows

    Popular Cows
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 27607   Accepted: 11109

    Description

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is 
    popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

    Input

    * Line 1: Two space-separated integers, N and M 

    * Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular. 

    Output

    * Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

    Sample Input

    3 3
    1 2
    2 1
    2 3
    

    Sample Output

    1
    

    Hint

    Cow 3 is the only cow of high popularity. 
    题意:判断有多少牛是其他牛都受欢迎的。由于关系太多太复杂,连通图内连通分量性质一样,所以先划分联通区域。一个连通图缩成一点处理,有向无环图出度为0的连通分量内的点数为受欢迎牛的个数。
      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 
      5 using namespace std;
      6 
      7 #define N 10008
      8 
      9 int Time, cnt, tot, top;
     10 int dfn[N], low[N], instack[N], stackk[N], head[N];
     11 int vis[N], id[N];
     12 
     13 struct node
     14 {
     15     int u, v, next;
     16 }e[N*5];   // 邻接表
     17 
     18 void add(int a, int b)
     19 {
     20     e[cnt].u = a;
     21     e[cnt].v = b;
     22     e[cnt].next = head[a];
     23     head[a] = cnt;
     24     cnt++;
     25 }
     26 
     27 void init()
     28 {
     29     tot = cnt = top = 0;
     30     Time = 0;
     31     memset(dfn, 0, sizeof(dfn));
     32     memset(low, 0, sizeof(low));
     33     memset(instack, 0, sizeof(instack));
     34     memset(stackk, 0, sizeof(stackk));
     35     memset(head, -1, sizeof(head));
     36     memset(vis, 0, sizeof(vis));
     37     memset(id, 0, sizeof(id));
     38 }
     39 
     40 void Tarjan(int u)
     41 {
     42     low[u] = dfn[u] = ++Time;
     43     instack[u] = 1;
     44     stackk[top++] = u;
     45 
     46     for(int i = head[u]; i != -1; i = e[i].next)
     47     {
     48         int v = e[i].v;
     49         if(!dfn[v])
     50             Tarjan(v);
     51         if(instack[v])
     52             low[u] = min(low[v], low[u]);
     53     }
     54     int v;
     55     if(low[u] == dfn[u])  // 找到一个连通分量
     56     {
     57         tot++;  // 强连通分量计数
     58         do
     59         {
     60             v = stackk[--top];
     61             instack[v] = 0;
     62             id[v] = tot;
     63         }while(v != u);
     64     }
     65 }
     66 
     67 int main()
     68 {
     69     int n, m, x, y;
     70     while(~scanf("%d%d", &n, &m))
     71     {
     72         init();
     73         while(m--)
     74         {
     75             scanf("%d%d", &x, &y);
     76             add(x, y);
     77         }
     78         for(int i = 1; i <= n; i++)
     79         {
     80             if(!dfn[i])
     81                 Tarjan(i);
     82         }
     83         int sum = 0, x;
     84 
     85         for(int i = 1; i <= n; i++)
     86         {
     87             for(int j = head[i]; j != -1; j = e[j].next)
     88             {
     89                 int q = e[j].v;
     90                 if(id[i] != id[q])  // 如果这两个点不属于一个强连通分量,就把 i 所在强连通分量的出度加一
     91                 {
     92                     vis[id[i]]++;
     93                 }
     94             }
     95         }
     96         for(int i = 1; i <= tot; i++)
     97         {
     98             if(!vis[i])
     99             {
    100                 sum++;
    101                 x = i;  // 记录哪个强连通分量是出度为0的图
    102             }
    103         }
    104         if(sum == 1)
    105         {
    106             sum = 0;
    107             for(int i = 1; i <= n; i++)
    108             {
    109                 if(id[i] == x)  // 出度为0的连通分量内的点计数
    110                     sum++;
    111             }
    112             printf("%d
    ", sum);
    113         }
    114         else
    115             printf("0
    ");
    116     }
    117     return 0;
    118 }
    让未来到来 让过去过去
  • 相关阅读:
    NAT和PAT
    谷歌浏览器如何正确离线网页
    安全
    VLAN
    交换
    动态路由
    静态路由
    配置Cisco网络设备
    导数表和基本积分表
    HNOI/AHOI2018题解
  • 原文地址:https://www.cnblogs.com/Tinamei/p/4789863.html
Copyright © 2011-2022 走看看