lines
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1375 Accepted Submission(s): 571
Problem Description
John has several lines. The lines are covered on the X axis. Let A is a point which is covered by the most lines. John wants to know how many lines cover A.
Input
The first line contains a single integer T(1≤T≤100)(the data for N>100 less than 11 cases),indicating the number of test cases.
Each test case begins with an integer N(1≤N≤105),indicating the number of lines.
Next N lines contains two integers Xi and Yi(1≤Xi≤Yi≤109),describing a line.
Each test case begins with an integer N(1≤N≤105),indicating the number of lines.
Next N lines contains two integers Xi and Yi(1≤Xi≤Yi≤109),describing a line.
Output
For each case, output an integer means how many lines cover A.
Sample Input
2
5
1 2
2 2
2 4
3 4
5 1000
5
1 1
2 2
3 3
4 4
5 5
Sample Output
3
1
Source
题意:给你n个区间覆盖x轴,问哪个点被覆盖的线段数多,是几条。
由于数据范围太大,所以离散化……
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 500008
struct node
{
int op,num;
}P[maxn];
int cmp(node a, node b)
{
return a.op < b.op;
}
int main()
{
int t, n, x, y;
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
int k = 0, j;
for(int i = 0; i < n; i++)
{
scanf("%d%d", &x, &y);
P[k].op = x;
P[k++].num = 1;
P[k].op = y+1;
P[k++].num = -1;
}
sort(P, P+k, cmp);
int cnt = 0, Max = 0;
for(int i = 0; i < k; )
{
j = i;
while(P[j].op == P[i].op && j < k)
{
cnt += P[j].num;
j++;
}
i = j;
Max = max(Max, cnt);
}
printf("%d
", Max);
}
return 0;
}