zoukankan      html  css  js  c++  java
  • @bzoj


    @description@

    给定一棵 n 个点的树,树上每条边的长度都为 1 ,第 i 个点的权值为 a[i]。
    Byteasar 会按照某个 1 到 n 的全排列 b 走 n-1 次,第 i 次他会从 b[i] 点走到 b[i+1] 点,并且这一次的步伐大小为 c[i]。
    对于一次行走,假设起点为 x,终点为 y,步伐为 k,那么 Byteasar 会从 x 开始,每步往前走 k 步,如果最后不足 k 步就能到达 y,那么他会一步走到 y。
    请帮助 Byteasar 统计出每一次行走时经过的所有点的权值和。

    input
    第一行包含一个正整数 n(2<=n<=50000)。表示节点的个数。
    第二行包含 n 个正整数,其中第 i 个数为 ai,分别表示每个点的权值。
    接下来 n-1 行,每行包含两个正整数 u, v(1<=u,v<=n),表示u与v之间有一条边。
    接下来一行包含 n 个互不相同的正整数,其中第i个数为 bi,表示行走路线。
    接下来一行包含 n-1 个正整数,其中第 i 个数为 ci,表示每次行走的步伐大小。

    output
    包含n-1行,每行一个正整数,依次输出每次行走时经过的所有点的权值和

    sample input
    5
    1 2 3 4 5
    1 2
    2 3
    3 4
    3 5
    4 1 5 2 3
    1 3 1 1
    sample output
    10
    6
    10
    5

    @solution@

    通过一些简单的树上差分,可以转换为这样一个问题:

    若干次询问,第 i 次询问某个点 xi 到根的路径上深度 mod mi = ci 的点的权值和。

    一个比较经典的模型。我们将 mi 分两类处理:
    (1)(mi le sqrt n),此时 (mi, ci) 这样一个二元组的数量只有 O(n) 个。我们将这些二元组暴力存下来,每一次加入一个点用 (O(sqrt n)) 的时间去更新。
    (2)(mi > sqrt n),此时满足要求的点数量为 (O(frac{n}{mi}) = O(sqrt n)),暴力将这些点找出来即可。

    离线处理,采用 dfs 去统计信息并回答询问。

    时间复杂度,第一类为 (O(n) + O(nsqrt n)),第二类为 (O(nsqrt n) + O(n))。其中前者为询问复杂度,后者为统计信息的复杂度。
    总时间复杂度 (O(nsqrt n))

    @accepted code@

    #include<cstdio>
    #include<vector>
    #include<algorithm>
    using namespace std;
    const int MAXN = 50000;
    const int SQRT = 250;
    struct edge{
    	int to; edge *nxt;
    }edges[2*MAXN + 5], *adj[MAXN + 5], *ecnt = &edges[0];
    void addedge(int u, int v) {
    	edge *p = (++ecnt);
    	p->to = v, p->nxt = adj[u], adj[u] = p;
    }
    int dep[MAXN + 5], fa[20][MAXN + 5];
    void dfs(int rt, int pre) {
    	dep[rt] = dep[pre] + 1, fa[0][rt] = pre;
    	for(int i=1;i<20;i++)
    		fa[i][rt] = fa[i-1][fa[i-1][rt]];
    	for(edge *p=adj[rt];p;p=p->nxt)
    		if( p->to != pre ) dfs(p->to, rt);
    }
    int lca(int u, int v) {
    	if( dep[u] < dep[v] ) swap(u, v);
    	for(int i=19;i>=0;i--)
    		if( dep[fa[i][u]] >= dep[v] )
    			u = fa[i][u];
    	if( u == v ) return u;
    	for(int i=19;i>=0;i--)
    		if( fa[i][u] != fa[i][v] )
    			u = fa[i][u], v = fa[i][v];
    	return fa[0][u];
    }
    struct query{
    	int m, r, f;
    	int num;
    	query(int _m=0, int _r=0, int _f=0, int _n=0):m(_m), r(_r), f(_f), num(_n){}
    };
    vector<query>qry[MAXN + 5];
    int a[MAXN + 5], b[MAXN + 5], c[MAXN + 5];
    int ans[MAXN + 5], arr[MAXN + 5];
    int res[SQRT + 5][SQRT + 5];
    void dfs2(int x) {
    	arr[dep[x]] = a[x];
    	for(int i=1;i<=SQRT;i++)
    		res[i][dep[x]%i] += a[x];
    	for(int i=0;i<qry[x].size();i++) {
    		if( qry[x][i].m <= SQRT ) {
    			ans[qry[x][i].num] += qry[x][i].f*res[qry[x][i].m][qry[x][i].r];
    			//printf("%d %d %d
    ", qry[x][i].num, x, qry[x][i].f*res[qry[x][i].m][qry[x][i].r]);
    		}
    		else {
    			for(int j=qry[x][i].r;j<=dep[x];j+=qry[x][i].m)
    				ans[qry[x][i].num] += qry[x][i].f*arr[j];
    		}
    	}
    	for(edge *p=adj[x];p;p=p->nxt)
    		dfs2(p->to);
    	for(int i=1;i<=SQRT;i++)
    		res[i][dep[x]%i] -= a[x];
    }
    int main() {
    	int n; scanf("%d", &n);
    	for(int i=1;i<=n;i++) scanf("%d", &a[i]);
    	for(int i=1;i<n;i++) {
    		int u, v; scanf("%d%d", &u, &v);
    		addedge(u, v);
    	}
    	dfs(1, 0);
    	for(int i=1;i<=n;i++) scanf("%d", &b[i]);
    	for(int i=1;i<n;i++) scanf("%d", &c[i]);
    	for(int i=1;i<n;i++) {
    		int p = b[i], q = b[i+1], r = lca(p, q);
    		qry[p].push_back(query(c[i], dep[p]%c[i], 1, i));
    		qry[fa[0][r]].push_back(query(c[i], dep[p]%c[i], -1, i));
    		int k = (dep[r] + c[i] - (dep[p] - dep[r])%c[i])%c[i];
    		qry[q].push_back(query(c[i], k, 1, i));
    		qry[r].push_back(query(c[i], k, -1, i));
    		if( dep[q]%c[i] != k ) ans[i] += a[q];
    	}
    	dfs2(1);
    	for(int i=1;i<n;i++) printf("%d
    ", ans[i]);
    }
    

    @details@

    看到网上题解说树链剖分什么的,我只想说:
    果然离线处理 + 差分好啊,一个 dfs 搞定的事情。

  • 相关阅读:
    metasploit(MSF)对windows的ms17-010漏洞利用
    kali 解决Metasploit拿到shell后显示中文乱码问题
    kali安装搜狗输入法
    Struts2 为Action 的属性注入值&& 处理请求后缀
    Action 名称搜索顺序&Action配置中的各项默认值
    Struts.xml配置中的包介绍
    AJAX 使用XMLHttpRequest对象发送和接受数据
    Unicode 汉字编码
    HTTP 协议 请求头详解
    java Dom 解析 XML 详细解答
  • 原文地址:https://www.cnblogs.com/Tiw-Air-OAO/p/10359129.html
Copyright © 2011-2022 走看看