zoukankan      html  css  js  c++  java
  • Julia常用包总结(深度学习、数据科学、绘图...updating...)

    Julia 常用包

    ref
    trend
    observer

    零.环境

    IJulia 是一个以Julia为后端的交互式环境,可以方便的进行交互式编程

    • 安装
    using Pkg
    Pkg.add("IJulia")
    • 使用
    using IJulia
    notebook()

    一.数据处理

    常用的数据处理包包括以下几个方面:

    1.基本科学计算

    TODO

    2.数据I/O

    • CSV

    • DataFrames


    二.绘图

    TODO


    三.机器学习

    Mocha

    Mocha是一个高效的深度学习框架,包含了通用的随机梯度求解器,可以它构建层训练深、浅(卷积)网络。

    • 安装
      Pkg.add("Mocha)
    • 使用例子
    using Mocha
    
    data  = HDF5DataLayer(name="train-data",source="train-data-list.txt",batch_size=64)
    conv  = ConvolutionLayer(name="conv1",n_filter=20,kernel=(5,5),bottoms=[:data],tops=[:conv])
    pool  = PoolingLayer(name="pool1",kernel=(2,2),stride=(2,2),bottoms=[:conv],tops=[:pool])
    conv2 = ConvolutionLayer(name="conv2",n_filter=50,kernel=(5,5),bottoms=[:pool],tops=[:conv2])
    pool2 = PoolingLayer(name="pool2",kernel=(2,2),stride=(2,2),bottoms=[:conv2],tops=[:pool2])
    fc1   = InnerProductLayer(name="ip1",output_dim=500,neuron=Neurons.ReLU(),bottoms=[:pool2],
                              tops=[:ip1])
    fc2   = InnerProductLayer(name="ip2",output_dim=10,bottoms=[:ip1],tops=[:ip2])
    loss  = SoftmaxLossLayer(name="loss",bottoms=[:ip2,:label])
    
    backend = DefaultBackend()
    init(backend)
    
    common_layers = [conv, pool, conv2, pool2, fc1, fc2]
    net = Net("MNIST-train", backend, [data, common_layers..., loss])
    
    exp_dir = "snapshots"
    solver_method = SGD()
    params = make_solver_parameters(solver_method, max_iter=10000, regu_coef=0.0005,
        mom_policy=MomPolicy.Fixed(0.9),
        lr_policy=LRPolicy.Inv(0.01, 0.0001, 0.75),
        load_from=exp_dir)
    solver = Solver(solver_method, params)
    
    setup_coffee_lounge(solver, save_into="$exp_dir/statistics.jld", every_n_iter=1000)
    
    # report training progress every 100 iterations
    add_coffee_break(solver, TrainingSummary(), every_n_iter=100)
    
    # save snapshots every 5000 iterations
    add_coffee_break(solver, Snapshot(exp_dir), every_n_iter=5000)
    
    # show performance on test data every 1000 iterations
    data_test = HDF5DataLayer(name="test-data",source="test-data-list.txt",batch_size=100)
    accuracy = AccuracyLayer(name="test-accuracy",bottoms=[:ip2, :label])
    test_net = Net("MNIST-test", backend, [data_test, common_layers..., accuracy])
    add_coffee_break(solver, ValidationPerformance(test_net), every_n_iter=1000)
    
    solve(solver, net)
    
    destroy(net)
    destroy(test_net)
    shutdown(backend)

    2.Flux

    flux是一个机器学习工具包,可以实现各种基本模型(如线性回归)到复杂模型(如神经网络)的搭建、优化和使用。

    - 安装

    Pkg.add("Flux")
    # 可选项目 更新和测试
    Pkg.update() # Keep your packages up to date
    Pkg.test("Flux") # Check things installed correctly
    • 使用,简单模型
    #定义模型
    W = rand(2, 5)
    b = rand(2)
    
    predict(x) = W*x .+ b
    
    function loss(x, y)
      ŷ = predict(x)
      sum((y .- ŷ).^2)
    end
    
    x, y = rand(5), rand(2) # Dummy data
    loss(x, y) # ~ 3
    
    # 求解梯度
    using Flux.Tracker
    
    W = param(W)
    b = param(b)
    
    gs = Tracker.gradient(() -> loss(x, y), Params([W, b]))
    
    #更新权重
    using Flux.Tracker: update!
    
    Δ = gs[W]
    
    # Update the parameter and reset the gradient
    update!(W, -0.1Δ)
    
    loss(x, y) # ~ 2.5

    3.Tensorflow

    tensorfl.jl基于tensorflow开发的julia封装。
    - 安装
    Pkg.add("TensorFlow")
    - 使用
    GPU支持
    ENV["TF_USE_GPU"] = "1"
    Pkg.build("TensorFlow")

    简单的例子:

    using TensorFlow
    
    sess = TensorFlow.Session()
    
    x = TensorFlow.constant(Float64[1,2])
    y = TensorFlow.Variable(Float64[3,4])
    z = TensorFlow.placeholder(Float64)
    
    w = exp(x + z + -y)
    
    run(sess, TensorFlow.global_variables_initializer())
    res = run(sess, w, Dict(z=>Float64[1,2]))
    Base.Test.@test res[1] ≈ exp(-1)

    4.MxNet

    MNXET(https://github.com/dmlc/MXNet.jl)julia

    • 安装
      Pkg.add("MXNet")
    • 使用
    using MXNet
    #模型定义
    mlp = @mx.chain mx.Variable(:data)             =>
      mx.FullyConnected(name=:fc1, num_hidden=128) =>
      mx.Activation(name=:relu1, act_type=:relu)   =>
      mx.FullyConnected(name=:fc2, num_hidden=64)  =>
      mx.Activation(name=:relu2, act_type=:relu)   =>
      mx.FullyConnected(name=:fc3, num_hidden=10)  =>
      mx.SoftmaxOutput(name=:softmax)
    
    # data provider
    batch_size = 100
    include(Pkg.dir("MXNet", "examples", "mnist", "mnist-data.jl"))
    train_provider, eval_provider = get_mnist_providers(batch_size)
    
    # setup model
    model = mx.FeedForward(mlp, context=mx.cpu())
    
    # optimization algorithm
    # where η is learning rate and μ is momentum
    optimizer = mx.SGD(η=0.1, μ=0.9)
    
    #模型训练
    # fit parameters
    mx.fit(model, optimizer, train_provider, n_epoch=20, eval_data=eval_provider)
    
    #预测
    probs = mx.predict(model, eval_provider)
    
    # collect all labels from eval data
    labels = reduce(
      vcat,
      copy(mx.get(eval_provider, batch, :softmax_label)) for batch ∈ eval_provider)
    # labels are 0...9
    labels .= labels .+ 1
    
    # Now we use compute the accuracy
    pred = map(i -> indmax(probs[1:10, i]), 1:size(probs, 2))
    correct = sum(pred .== labels)
    accuracy = 100correct/length(labels)
    @printf "Accuracy on eval set: %.2f%%
    " accuracy
    

    5.Scikit

    scikitlearn流行的机器学习包julia实现,支持多种机器学习模型。

    - 安装
    Pkg.add("ScikitLearn")
    - 使用的简单例子

    using RDatasets: dataset
    
    iris = dataset("datasets", "iris")
    #定义数据
    # ScikitLearn.jl expects arrays, but DataFrames can also be used - see
    # the corresponding section of the manual
    X = convert(Array, iris[[:SepalLength, :SepalWidth, :PetalLength, :PetalWidth]])
    y = convert(Array, iris[:Species])
    
    #载入逻辑回归模型
    using ScikitLearn
    
    # This model requires scikit-learn. See
    # http://scikitlearnjl.readthedocs.io/en/latest/models/#installation
    @sk_import linear_model: LogisticRegression
    Every model's constructor accepts hyperparameters (such as regression strength, whether to fit the intercept, the penalty type, etc.) as keyword arguments. Check out ?LogisticRegression for details.
    
    model = LogisticRegression(fit_intercept=true)
    Then we train the model and evaluate its accuracy on the training set:
    
    #训练
    fit!(model, X, y)
    #预测
    accuracy = sum(predict(model, X) .== y) / length(y)
    println("accuracy: $accuracy")
    
    > accuracy: 0.96
  • 相关阅读:
    解耦和耦合
    python os.remove()方法
    python中split()、os.path.split()函数用法
    P7116-[NOIP2020]微信步数【数学】
    2021牛客OI赛前集训营-方格计数【计数,dp】
    2021牛客OI赛前集训营-树数树【树上启发式合并,堆】
    Ybtoj-排列计数【矩阵乘法,分块幂】
    P7888-「MCOI-06」Distinct Subsequences【dp】
    号爸十一集训 Logs
    数据结构 专项题解
  • 原文地址:https://www.cnblogs.com/Tom-Ren/p/9897829.html
Copyright © 2011-2022 走看看