U33405 纽约
花费 (w) 元可以购买一辆容量为 (w) 的车
现在你有 (n <= 2000) 个物品, 搬运策略: 一直搬能放下里面最重的, 直到任意物品都不能搬上为止
求满足运送次数 (<= R) 的情况下买车花费的最少钱数
Solution
二分花钱数, 模拟搬运过程, 复杂度 (O(n^{2}log{n}))
因为物品排序后有单调性, 且只能用一次(搬一次), 使用链表优化, 总复杂度(O(n log{n}))
可是这题我认为有问题
upd: 哦原来后面有说
问题出在在符合搬运策略的情况下, 出钱数与搬运次数不符合单调性
所以最后加了个往前面检查多次查看是否合法, 取较小值
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int (i) = (x);(i) <= (y);(i)++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 4019;
int num, R;
int w[maxn], l[maxn], r[maxn];
int minn, maxx;
bool cmp(int a, int b){return a > b;}
void init(){
REP(i, 1, num)l[i] = i - 1, r[i] = i + 1;
r[0] = 1;
}
bool check(int k){
init();
int tim = 0, tot = 0, now = 0, left = num;
while(1){
now = r[0], tot = 0;
tim++;
while(now <= num){//运一次
if(tot + w[now] <= k){//不超重
tot += w[now];
r[l[now]] = r[now];//链表删除
l[r[now]] = l[now];
left--;
if(!left){//所有东西搬完检查次数
if(tim <= R)return 1;
return 0;
}
}
now = r[now];
}
if(tim > R)return 0;
}
}
int search(int l, int r){
int ans = -1;
while(l <= r){
int mid = (l + r) >> 1;
if(check(mid))ans = mid, r = mid - 1;
else l = mid + 1;
}
return ans;
}
int ans;
int main(){
num = RD(), R = RD();
REP(i, 1, num)w[i] = RD(), minn = min(minn, w[i]), maxx += w[i];
sort(w + 1, w + 1 + num, cmp);
int temp = search(minn, maxx);
for(ans = temp - 51;ans <= temp && !check(ans);ans++);
printf("%d
", ans);
return 0;
}