P1850 换教室
现在有一张图, 有 (v <= 300) 个节点
你需要从 (c_{1}) 到 (c_{2}) 到 (c_{n} (n <= 2000))
现在你有 (m) 次机会把 (c_{i}) 换为 (d_{i}), 对于第 (i) 个, 成功的概率为 (k_{i})
求走完整个路程的期望路径长度
错误日志: 作死赋值 (double) 用 (memset)
Solution
这是第一个有关期望的题呢
本题为期望 (dp) , 从上一个状态转移过来(听dalao说还有一种是计算本状态对后面状态的贡献)
具体来说, 这个状态可以由以上 (n) 个状态得到, 每个状态权值为 (w_{i}), 其中第 (i) 个状态到此状态的概率为 (k_{i}), 那么有此状态可以表示为 $$dp[now] = sum_{i = 1}^{n}{w_{i} * k_{i}}$$
本题状态为:
(dp[i][j][0/1]) 代表选到第 (i) 门课用掉 (j) 次机会, 此次申请或不申请的期望值
所有转移详细记录在注释中
答案自然在 (min_{i = 0}^{m}{min(dp[n][i][0], dp[n][i][1])})
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int (i) = (x);(i) <= (y);(i)++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 4019, maxv = 319;
int num, numc, numv, nr;
int map[maxv][maxv];
int c[maxn], d[maxn];
double k[maxn];
double dp[maxn][maxn][2];
void floyd(){
REP(i, 1, numv)map[i][i] = 0;
REP(k, 1, numv)REP(i, 1, numv)REP(j, 1, numv){
map[i][j] = min(map[i][j], map[i][k] + map[k][j]);
}
}
int dist(int x, int y){return map[x][y];}
void init(){
REP(i, 1, numv)REP(j, 1, numv)map[i][j] = 1e9;
REP(i, 1, num)REP(j, 0, numc)dp[i][j][0] = dp[i][j][1] = 1e9;
}
int main(){
num = RD(), numc = RD(), numv = RD(), nr = RD();
init();
REP(i, 1, num)c[i] = RD();
REP(i, 1, num)d[i] = RD();
REP(i, 1, num)cin>>k[i];
REP(i, 1, nr){
int u = RD(), v = RD(), dis = RD();
map[u][v] = min(map[u][v], dis);
map[v][u] = map[u][v];
}
floyd();
dp[1][0][0] = dp[1][1][1] = 0;//选或不选都为起点
REP(i, 2, num){
int m = min(numc, i);
REP(j, 0, m){//可以不申请换教室, 从0开始
dp[i][j][0] = min(//本次不申请
dp[i - 1][j][0] + dist(c[i], c[i - 1]),//上次不申请
dp[i - 1][j][1]//上次申请
+ dist(c[i], d[i - 1]) * k[i - 1]//申请成功
+ dist(c[i], c[i - 1]) * (1 - k[i - 1])//申请失败
);
if(!j)continue;
dp[i][j][1] = min(//本次申请
dp[i - 1][j - 1][0]//上次不申请
+ dist(d[i], c[i - 1]) * k[i]//本次成功
+ dist(c[i], c[i - 1]) * (1 - k[i]), //本次失败
dp[i - 1][j - 1][1]//上次申请
+ dist(c[i], c[i - 1]) * (1 - k[i]) * (1 - k[i - 1])//0->0
+ dist(d[i], c[i - 1]) * k[i] * (1 - k[i - 1])//0->1
+ dist(c[i], d[i - 1]) * (1 - k[i]) * k[i - 1]//1->0
+ dist(d[i], d[i - 1]) * k[i] * k[i - 1]//1->1
);
}
}
double ans = 100000019;
REP(i, 0, numc){
ans = min(ans, dp[num][i][0]);
ans = min(ans, dp[num][i][1]);
}
printf("%.2lf
", ans);
return 0;
}