zoukankan      html  css  js  c++  java
  • a fast algorithm to compute the area of a polygon

    Assume there is a polygon (v1, v2,...vn), where vi, (1<=i<=n) are its vertices. What is the area of this polygon?

    We have learnt cross product, which can be used to calculate the area of a triangle. We can also use this to calculate the area of a polygon by dividing the polygon with n segments into triangles. So the question is how to divide the polygon into triangles. We can choose a vertex A, and connect this vertex, A, to the vertices of the polygon. 

    There are various ways to achieve this which need proving. One way is use one vertex of the polygon as vertex A. Another way is to choose origin (0, 0) as vertex A. We can connect A(0, 0) with vi (1<=i<=n) to form triangles, A-v1-v2, A-v2-v3, A-v3-v4,...A-vn-1-vn, A-vn-v1. We can sum all the areas of these triangle, and the sum is 2 times the size of the area of polygon, labled as S.

    2*S = |S(A-v1-v2) + S(A-v2-v3)+...+S(A-vn-1-vn)+S(A-vn-v1)|

          = |x1y2-x2y1 + x2y3-x3y2 +...+ x(n-1)yn-xny(n-1)+xny1-x1yn|

    which needs 2*n multiplications of double type.

    We can reduce the calling of mulplications of double type to n by an observation, x2y2-x1y1 + x3y3-x2y2 + ... + ynxn - x(n-1)y(n-1) + x1y1 - xnyn = 0.

    So  2*S = |x1y2-x2y1 + x2y3-x3y2 +...+ x(n-1)yn-xny(n-1)+xny1-x1yn     +   x2y2-x1y1 + x3y3-x2y2 + ... + ynxn - x(n-1)y(n-1) + x1y1 - xnyn |

                = |(x1+x2)*(y2-y1) + (x2+x3)(y3-y2) +...+(x(n-1)+xn)*(yn-y(n-1)) + (xn+x1)*(y1-yn)|

    which needs n multiplications of double type. This is the fast algorithm I have seen to compute the area of a polygon.

  • 相关阅读:
    普通函数跟箭头函数中this的指向问题
    vue之router学习笔记
    vue之登录和token处理
    vue之router钩子函数
    eslint----standard 代码规范
    vscode----配置vue开发环境
    vue----安装教程
    vue----全局组件,局部组件
    vue----常用实例方法--$mount(),$destroy(),$watch(),$forceUpdate()
    vue----生命周期
  • 原文地址:https://www.cnblogs.com/Torstan/p/2580569.html
Copyright © 2011-2022 走看看