zoukankan      html  css  js  c++  java
  • a fast algorithm to compute the area of a polygon

    Assume there is a polygon (v1, v2,...vn), where vi, (1<=i<=n) are its vertices. What is the area of this polygon?

    We have learnt cross product, which can be used to calculate the area of a triangle. We can also use this to calculate the area of a polygon by dividing the polygon with n segments into triangles. So the question is how to divide the polygon into triangles. We can choose a vertex A, and connect this vertex, A, to the vertices of the polygon. 

    There are various ways to achieve this which need proving. One way is use one vertex of the polygon as vertex A. Another way is to choose origin (0, 0) as vertex A. We can connect A(0, 0) with vi (1<=i<=n) to form triangles, A-v1-v2, A-v2-v3, A-v3-v4,...A-vn-1-vn, A-vn-v1. We can sum all the areas of these triangle, and the sum is 2 times the size of the area of polygon, labled as S.

    2*S = |S(A-v1-v2) + S(A-v2-v3)+...+S(A-vn-1-vn)+S(A-vn-v1)|

          = |x1y2-x2y1 + x2y3-x3y2 +...+ x(n-1)yn-xny(n-1)+xny1-x1yn|

    which needs 2*n multiplications of double type.

    We can reduce the calling of mulplications of double type to n by an observation, x2y2-x1y1 + x3y3-x2y2 + ... + ynxn - x(n-1)y(n-1) + x1y1 - xnyn = 0.

    So  2*S = |x1y2-x2y1 + x2y3-x3y2 +...+ x(n-1)yn-xny(n-1)+xny1-x1yn     +   x2y2-x1y1 + x3y3-x2y2 + ... + ynxn - x(n-1)y(n-1) + x1y1 - xnyn |

                = |(x1+x2)*(y2-y1) + (x2+x3)(y3-y2) +...+(x(n-1)+xn)*(yn-y(n-1)) + (xn+x1)*(y1-yn)|

    which needs n multiplications of double type. This is the fast algorithm I have seen to compute the area of a polygon.

  • 相关阅读:
    [posix]Posix多线程编程
    [Makefile]多文件的通用Makefile
    表格花式效果
    JavaScript实现按键精灵
    JavaScript中几个相似方法对比
    谨慎能捕千秋蝉(三)——界面操作劫持与HTML5安全
    谨慎能捕千秋蝉(二)——CSRF
    日月如梭,玩转JavaScript日期
    Wireshark网络抓包(四)——工具
    Wireshark网络抓包(三)——网络协议
  • 原文地址:https://www.cnblogs.com/Torstan/p/2580569.html
Copyright © 2011-2022 走看看