zoukankan      html  css  js  c++  java
  • HDU2973(威尔逊定理)

    YAPTCHA

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 875    Accepted Submission(s): 458


    Problem Description
    The math department has been having problems lately. Due to immense amount of unsolicited automated programs which were crawling across their pages, they decided to put Yet-Another-Public-Turing-Test-to-Tell-Computers-and-Humans-Apart on their webpages. In short, to get access to their scientific papers, one have to prove yourself eligible and worthy, i.e. solve a mathematic riddle.


    However, the test turned out difficult for some math PhD students and even for some professors. Therefore, the math department wants to write a helper program which solves this task (it is not irrational, as they are going to make money on selling the program).

    The task that is presented to anyone visiting the start page of the math department is as follows: given a natural n, compute

    where [x] denotes the largest integer not greater than x.
     

    Input
    The first line contains the number of queries t (t <= 10^6). Each query consist of one natural number n (1 <= n <= 10^6).
     

    Output
    For each n given in the input output the value of Sn.
     

    Sample Input
    13 1 2 3 4 5 6 7 8 9 10 100 1000 10000
     

    Sample Output
    0 1 1 2 2 2 2 3 3 4 28 207 1609
     

    Source

    Central European Programming Contest 2008 

    威尔逊定理:( p -1 )! ≡ -1 ( mod p ) 时,p为素数。

    证明如下

    充分性:

    当p不是素数,那么令p=a*b ,其中1 < a < p-1 ,1 < b < p-1.

        (1)若a≠b,

            因为(p-1)!=1*2*...*a*...*b*...*p-1,

            所以(p-1)!≡ 0 (mod a)        

                   (p-1)!≡ 0 (mod b)

            可得(p-1)!≡ 0 (mod a*b) ,

                  即 (p-1)!≡ 0 (mod p)

            与( p -1 )! ≡ -1 ( mod p )  矛盾

        (2)若a=b

            因为(p-1)!=1*2*...*a*...*2a*...*p-1.

            所以(p-1)!≡ 0 (mod a)          

                   (p-1)!≡ 0 (mod 2a)

            可得(p-1)!≡ 0 (mod a*2a) => (p-1)!≡ 0 (mod a*a) ,

              即 (p-1)!≡ 0 (mod p)

            与( p -1 )! ≡ -1 ( mod p )  矛盾

    因此p只能是素数。

    必要性:

    当p为2,( p -1 )! ≡ -1 ( mod p ) 显然成立

    当p为3,( p -1 )! ≡ -1 ( mod p ) 显然成立

    对于p>=5,令M={2,3,4,...,p-2}.

            对于a∈M,令N={a,2*a,3*a,4*a,....(p-2)*a,(p-1)*a}

            令1 <= t1 <= p-1 ,1 <= t2 <= p-1,t1 ≠ t2

            那么t1*a∈N,t2*a∈N。

            若t1*a≡t2*a (mod p) ,那么|t1-t2|*a ≡ 0 (mod p)。

            因为|t1-t2|*a∈N,与N中元素不能被p除尽矛盾。

            所以t1*a≡t2*a不成立。

            那么N中元素对p取模后形成的集合为{1,2,3,4,...,p-1}.

            设x*a ≡ 1 (mod p)。

                    当x=1时, x*a=a, 对p取模不为1,所以不成立。

                    当x=p-1时,(p-1)*a=p*a-a, 对p取模不为1,所以不成立。

                    当x=a时,a*a≡1 (mod p),可得(a+1)*(a-1)≡ 0 (mod p),a=1或a=p-1 ,所以不成立。

            综上所述,x,a∈M,并且当a不同时,x也随之不同。

            所以,M集合中每一个元素a都能够找到一个与之配对的x,使得x*a ≡ 1 (mod p).

            (p-1)!=1*2*3*...p-1

                      =1*(2*x1)*(3*x3)*...*(p-1)

            所以, (p-1)!1*(p-1)    (mod p)

            即,(p-1)!-1     (mod p) 

           证明完毕

    #include <bits/stdc++.h>
    using namespace std;
    
    #define mem(a) memset(a, 0, sizeof(a))
    const int maxn = 1e6+100;
    int ans[maxn*3+100];
    
    int isprime(int n) {
    	if (n == 1)	return 0;
    	if (n == 2)	return 1;
    	for (int i = 2; i*i<=n; i++) {
    		if (n%i == 0)	return 0;
    	}
    	return 1;
    }
    
    void init() {
    	mem(ans);
    	for (int i = 1; i<maxn; i++) {
    		if (isprime(i*3+7))	ans[i] = ans[i-1]+1;
    		else	ans[i] = ans[i-1];
    	}
    }
    
    int main() {
    	init();
    	int t;
    	scanf("%d", &t);
    	while (t --) {
    		int n;
    		scanf("%d", &n);
    		printf("%d
    ",ans[n]);
    	}
    	
    	
    	return 0;
    }


  • 相关阅读:
    el-cascader回显问题
    nuxt + ueditor国际化
    nuxt + element + i18n 国际化element(我用的i18n@8.x版本)
    CDH| 组件的使用-Flume| Kafka| Oozie基于Hue的任务调度
    CDH| Hive| Hue| Sqoop| Impala等组件安装部署
    CDH| 组件的安装-HDFS的配置 | Flume| Kafka|
    Flink| 实时需要分析
    Flink| 状态一致性
    Flink| 容错机制
    Flink| 第一个窗口触发时间
  • 原文地址:https://www.cnblogs.com/Tovi/p/6194760.html
Copyright © 2011-2022 走看看