zoukankan      html  css  js  c++  java
  • 2020-2021-1 20209327 《Linux内核原理与分析》第三周作业

    时间片轮转多道程序内核代码分析


    代码实现

    使用实验楼的环境进行实验,结果如图:

    LinuxKernel/linux-3.9.4/mykernel目录下修改源代码:

    在mypcb.h中定义PCB:

    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*2
    /* CPU-specific state of this task */
    struct Thread {
        unsigned long		ip;
        unsigned long		sp;
    };
    
    typedef struct PCB{
        int pid;
        volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
        unsigned long stack[KERNEL_STACK_SIZE];
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long	task_entry;
        struct PCB *next;
    }tPCB;
    
    void my_schedule(void);
    

    在mymain.c中实现内核代码的入口,负责初始化内核的各个组成部分:

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
    	    task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
    	asm volatile(
        	"movl %1,%%esp
    	" 	/* set task[pid].thread.sp to esp */
        	"pushl %1
    	" 	        /* push rbp */
        	"pushl %0
    	" 	        /* push task[pid].thread.ip */
        	"ret
    	" 	            /* pop task[pid].thread.ip to rip */
        	: 
        	: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)	/* input c or d mean %ecx/%edx*/
    	);
    } 
    
    int i = 0;
    
    void my_process(void)
    {    
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
            	    my_schedule();
            	}
            	printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }
    

    在myinterrupt.c中实现进程切换:

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
        if(time_count%1000 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
        return;  	
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
        	return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {        
        	my_current_task = next; 
        	printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);  
        	/* switch to next process */
        	asm volatile(	
            	"pushl %%ebp
    	" 	    /* save ebp of prev */
            	"movl %%esp,%0
    	" 	/* save esp of prev */
            	"movl %2,%%esp
    	"     /* restore  esp of next */
            	"movl $1f,%1
    	"       /* save rip of prev */	
            	"pushl %3
    	" 
            	"ret
    	" 	            /* restore  rip of next */
            	"1:	"                  /* next process start here */
            	"popl %%ebp
    	"
            	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            	: "m" (next->thread.sp),"m" (next->thread.ip)
        	); 
        }  
        return;	
    }
    

    执行结果如图:

    代码分析

    进程初始化

    初始化一个进程的内嵌汇编代码如下:

    asm volatile(
        	"movl %1,%%esp
    	" 	
        	"pushl %1
    	" 	        
        	"pushl %0
    	" 	        
        	"ret
    	" 	            
            "popl %%ebp
    	"
        	: 
        	: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)
    	);
    
    • movl %1,%%esp :将esp指向task[0].thread.sp,此时esp和ebp都指向进程0的堆栈栈底
    • pushl %1 :将ebp的值入栈,即esp移动一个存储单元,将task[0].thread.sp压入栈中
    • pushl %0 :将0号进程的入口task[0].thread.ip压入栈中
    • ret :将当前栈顶的值弹出至eip中,即将task[0].thread.ip存入eip,表示接下来即将启动0进程
    • popl %%ebp :作为编码习惯出现,不会被执行

    进程切换

    假设系统有进程0和进程1,若由当前的进程0切换至进程1,则进行如下操作:

    asm volatile(   
                "pushl %%ebp
    	"          
                "movl %%esp,%0
    	"     
                "movl %2,%%esp
    	" 
                "movl %2,%%ebp
    	"   
                "movl $1f,%1
    	"           
                "pushl %3
    	"               
                "ret
    	"                          
                "1:	"                               
                "popl %%ebp
    	"           
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
    
    • pushl %%ebp :在栈中保存进程0的ebp
    • movl %%esp,%0 :在prev->thread.sp中保存进程0的esp
    • movl %2,%%esp :将esp指向next->thread.sp,将工作堆栈切换到进程1的堆栈空间
    • movl %2,%%ebp :将ebp指向进程1的栈底
    • movl $1f,%1 :将$1f保存至进程0的thread.ip
    • pushl %3 :在进程1的堆栈空间中,将task[1].thread.ip压入栈中
    • ret :将栈顶的task[1].thread.ip弹出至eip中,即将执行进程1
    • 1: :与$1f配合使用,表示再次切换进程0时从标号1处开始执行
    • popl %%ebp :作为编码习惯出现,不会被执行

    问题与总结

    问题1:最初的想法是在自己的Ubuntu16.04虚拟机中进行实验,在按照教材执行wget https://raw.github.com/mengning/mykernel/master/mykernel_for_linux3.9.4sc.patch时,出现如下错误:

    解决方法如下:

    首先查询raw.githubusercontent.com的IP:

    然后将151.101.76.133 raw.githubusercontent.com添加到/etc/hosts文件中:

    再次执行命令,发现问题已解决:

    问题2:在自己的虚拟机进行make时,出现如下错误:

    于是我根据网络上的教程不小心将gcc相关配置文件删除了,最终也没能解决,于是决定还原虚拟机备份并在实验楼做实验。

    最后,总结一下操作系统是如何工作的:

    Linux操作系统由内核来实现具体工作。创建或切换一个进程时,首先将原本正在运行的进程的上下文保存在堆栈中,然后将新进程的上下文信息加载到相应的寄存器中,并运行当前新进程;运行完毕后根据系统的调度继续执行相应的操作。

    参考链接

  • 相关阅读:
    【NOI1999、LOJ#10019】生日蛋糕(搜索、最优化剪枝、可行性剪枝)
    【NOI2016】区间
    【CodeForces688A】Opponents
    「LOJ10150」括号配对
    HDU6444(子段和、分情况比较)
    牛客练习赛41E(球的体积并)
    Codeforces 1154G(枚举)
    POJ1830(异或高斯消元)
    Codeforces 1114F(欧拉函数、线段树)
    牛客小白月赛13 G(双向搜索)
  • 原文地址:https://www.cnblogs.com/TracerElena/p/13869732.html
Copyright © 2011-2022 走看看