zoukankan      html  css  js  c++  java
  • 触摸屏的分类与实现原理(一)

    触摸屏原理

    触摸屏系统一般包括两个部分:触摸检测装置和触摸屏控制器。触摸检测装置安装在显示器屏幕前面,用于检测用户触摸位置,接收后送触摸屏控制器;触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。

    触摸屏特点

    从技术原理角度来讲,触摸屏是一套透明的绝对定位系统,它有以下特点:

    首先它必须保证是透明的,触摸检测装置是在显示屏的上面,因此它必须通过材料科技来解决透明问题。其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作。不像鼠标,是相对定位的一套系统,我们可以注意到,触摸屏软件都不需要光标,有光标反倒影响用户的注意力,因为光标是给相对定位的设备用的,相对定位的设备要移动到一个地方首先要知道现在在何处,往哪个方向去,每时每刻还需要不停的给用户反馈当前的位置才不致于出现偏差。再次就是能检测手指的触摸动作并且判断手指位置,各类触摸屏技术就是围绕“检测手指触摸”而八仙过海各显神通的。

    随着科技的进步,触摸屏技术也经历了从低档向高档逐步升级和发展的过程。根据其触摸检测装置的工作原理(透明导电与光声返回),其目前一般被分为四大类:电阻式触摸屏、电容式触摸屏、红外线式触摸屏和表面声波触摸屏。

    触摸屏的第一个特征:透明,它直接影响到触摸屏的视觉效果。透明有透明的程度问题,红外线技术触摸屏和表面声波触摸屏只隔了一层纯玻璃,透明可算佼佼者。很多触摸屏是多层的复合薄膜,仅用透明一点来概括它的视觉效果是不够的,它应该至少包括四个特性:透明度、色彩失真度、反光性和清晰度,还能再分,比如反光程度包括镜面反光程度和衍射反光程度,只不过我们的触摸屏表面衍射反光还没到达CD盘的程度,对用户而言,这四个度量已经基本够了。

    触摸屏的第二个特性:绝对坐标系统,要选哪就直接点那。触摸屏在物理上是一套独立的坐标定位系统,每次触摸的数据通过校准数据转为屏幕上的坐标,这样,就要求触摸屏这套坐标不管在什么情况下,同一点的输出数据是稳定的,如果不稳定,那么这触摸屏就不能保证绝对坐标定位,点不准,这就是触摸屏最怕的问题:漂移。技术原理上凡是不能保证同一点触摸每一次采样数据相同的触摸屏都免不了漂移这个问题,目前有漂移现象的只有电容触摸屏。

    触摸屏的第三个特性:检测触摸并定位,各种触摸屏技术都是依靠各自的传感器来工作的,甚至有的触摸屏本身就是一套传感器。各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠性、稳定性和寿命。触摸屏的传感器方式还决定了该触摸屏如何识别多点触摸的问题。也就是超过一点的同时触摸怎么办?有人触摸时接着旁边又有人触摸怎么办?这是触摸屏使用过程中经常出现的问题,这是所有触摸屏要解决的问题。

    电阻式触摸屏

    电阻触摸屏的屏体部分是一块多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(ITO膜),上面再盖有一层外表面经过硬化处理、光滑防刮的塑料层。它的内表面也涂有一层ITO,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开。

    当手指触摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y轴方向的5V均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行A/D转换,并将得到的电压值与5V相比即可得触摸点的Y轴坐标,同理得出X轴的坐标,这就是所有电阻技术触摸屏共同的最基本原理。

         

    电阻类触摸屏的关键在于材料科技。常用的透明导电涂层材料有:

    ITO,氧化铟,弱导电体。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。

    镍金涂层,是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。

    由于屏幕的二层导电层必须要进行接触才能实现定位,所以外表面不能太硬,要软一些。这样就导致电阴屏容易被刮坏,屏面有污秽、尘埃或油渍时会增加二层之间的接触困难。而电阻式触摸屏的ITO涂层若太薄则容易脆断,涂层太厚又会降低透光且形成内反射降低清晰度。由于经常被触动,表层ITO使用一定时间后会出现细小裂纹,甚至变型,因此其寿命并不长久。电阻式触摸屏价格便宜且易于生产,因而仍是人们较为普遍的选择。四线式、五线式以及七线、八线式触摸屏的出现使其性能更加可靠, 同时也改善了它的光学特性。

    五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。

    五线电阻触摸屏的改进:

    首先五线电阻触摸屏的A面是导电玻璃而不是导电涂覆层,导电玻璃的工艺使得A面的寿命得到极大的提高,并且可以提高透光率。

    其次五线电阻触摸屏把工作面的任务都交给寿命长的A面,而B面只用来作为导体,并且采用了延展性好、电阻率低的镍金透明导电层,因此,B面的寿命也极大的提高。

    五线电阻触摸屏的另一个专有技术是通过精密的电阻网络来校正A面的线性问题:由于工艺工程不可避免的有可能厚薄不均而造成电压场不均匀分布,精密电阻网络在工作时流过绝大部分电流,因此可以补偿工作面有可能的线性失真。

    五线电阻触摸屏的外表面是导电玻璃而不是导电涂覆层,这种导电玻璃的寿命较长,透光率也较高。

    电容式触摸屏

    电容技术的触摸屏是一块四层复合玻璃屏,如下图所示。玻璃屏的内表面和夹层各涂有一层ITO导电层,最外层是只有0.0015毫米厚的矽土玻璃保护层。内层ITO作为屏蔽层,以保证良好的工作环境,夹层ITO涂层作为检测定位的工作层,在四个角或四条边上引出四个电极。

      

    电容屏基本工作原理的最初想法是:人是假象的接地物(零电势体),给工作面通上一个很低的电压,当用户触摸屏幕时,手指头吸收走一个很小的电流,这个电流分从触摸屏四个角或四条边上的电极中流出,并且理论上流经这四个电极的电流与手指到四角的距离成比例,控制器通过对这四个电流比例的精密计算,得出触摸点的位置。

    这个想法本来是很好的。但是,按照这种思路进行下去,却碰到了难以逾越的障碍:目前的透明导电材料ITO——氧化金属非常脆弱,触摸几下就会损坏,还不能直接用来作工作层。材料的问题一时还难以解决,只好委曲求全:在外部增加一层非常薄的坚硬玻璃,由于不同于电阻屏需要二层接触才能定位,后这个外层多硬也没有关系。不过由于这一层的坚硬玻璃加入,确能保护导体及感应器,更能有效地防止外在环境因素对触摸屏造成影响,就算屏幕沾有污秽、尘埃或油渍,电容式触摸屏依然能准确算出触摸位置。

    这层玻璃显然是不导电的,直流导电是不行了,改用高频交流信号,靠人的手指头(隔着薄玻璃)与工作面形成的耦合电容来吸走一个交流电流,这就是电容屏“电容”名字的由来:靠耦合电容来工作。

    问题解决了,但代价是很大的:

    首先是“漂移”,因为耦合电容的方式是不稳定的,它直接受温度、湿度、手指湿润程度、人体体重、地面干燥程度影响,受外界大面积物体的干扰也非常大,带来了不稳定的结果,这些都直接违背了作为触摸屏这种绝对坐标系统的基本要求,不可避免的要产生漂移。所以在操作上是没电阻的优势,电阴的唯一要求就是物理压屏从而达定位,而电容是通操控体吸走电容(漏电的形式)来达到定位的,如人的手指头,但小木棒不行。

    电容方式的另一个代价是:最外这层极薄的玻璃,正常情况下防刮擦性能非常好,但工艺上要求在真空下制造,因为它害怕氢,哪怕有一点氢也会结合成易脆碎的玻璃,使用中轻轻一敲就成个小破洞,这对电容触摸屏来说是要命的:破洞周围直径5cm大小的区域不能使用。实际的真空是不可能有的,这层极薄的玻璃有5%的概率碰上有破洞的产品。

    电容式触摸屏设备精确、反应快,尺寸稍大时也有较高分辨率, 更耐用(抗刮擦), 因而适合用作游戏机的触摸屏。而且,新出现的近场成像技术改良了电容式触摸屏的性能, 减弱了在它和电阻式触摸屏中可能出现的漂移现象。

    表面声波触摸屏

    表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面。这块玻璃平板只是一块纯粹的强化玻璃,区别于别类触摸屏技术是没有任何贴膜和覆盖层。

    玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。玻璃屏的四个周边则刻有45°角由疏到密间隔非常精密的反射条纹。见下图。

     

    发射换能器把控制器通过触摸屏电缆送来的电信号转化为声波能量向左方表面传递,然后由玻璃板下边的一组精密反射条纹把声波能量反射成向上的均匀面传递,声波能量经过屏体表面,再由上边的反射条纹聚成向右的线传播给X-轴的接收换能器,接收换能器将返回的表面声波能量变为电信号。

    发射信号与接收信号波形在没有触摸的时候,接收信号的波形与参照波形完全一样。当手指或其它能够吸收或阻挡声波能量的物体触摸屏幕时,X轴途经手指部位向上走的声波能量被部分吸收,反应在接收波形上即某一时刻位置上波形有一个衰减缺口。接收波形对应手指挡住部位信号衰减了一个缺口,计算缺口位置即得触摸坐标 控制器分析到接收信号的衰减并由缺口的位置判定X坐标。之后Y轴同样的过程判定出触摸点的Y坐标。除了一般触摸屏都能响应的X、Y坐标外,表面声波触摸屏还响应第三轴Z轴坐标,也就是能感知用户触摸压力大小值。其原理是由接收信号衰减处的衰减量计算得到

    表面声波触摸屏特点

    抗暴:因为表面声波触摸屏的工作面是一层看不见、打不坏的声波能量,触摸屏的基层玻璃没有任何夹层和结构应力(表面声波触摸屏可以发展到直接做在CRT表面从而没有任何“屏幕”),因此非常抗暴力使用,适合公共场所。

    清晰美观:因为结构少,只有一层普通玻璃,透光率和清晰度都比电容电阻触摸屏好得多。

    反应速度快:是所有触摸屏中反应速度最快的,使用时感觉很顺畅。

    性能稳定:因为表面声波技术原理稳定,而表面声波触摸屏的控制器靠测量衰减时刻在时间轴上的位置来计算触摸位置,所以表面声波触摸屏非常稳定,精度也非常高,目前表面声波技术触摸屏的精度通常是4096×4096×256级力度。

    表面声波触摸屏的缺点:触摸屏表面的灰尘和水滴也阻挡表面声波的传递,虽然聪明的控制卡能分辨出来,但尘土积累到一定程度,信号也就衰减得非常厉害,此时表面声波触摸屏变得迟钝甚至不工作,因此,表面声波触摸屏一方面推出防尘型触摸屏,一方面建议别忘了每年定期清洁触摸屏。

    表面声波触摸屏能聪明的知道什么是尘土和水滴,什么是手指,有多少在触摸。因为:我们的手指触摸在4096×4096×256级力度的精度下,每秒48次的触摸数据不可能是纹丝不变的,而尘土或水滴就一点都不变,控制器发现一个“触摸”出现后纹丝不变超过三秒钟即自动识别为干扰物。

    表面声波触摸屏还具有第三轴Z轴,也就是压力轴响应,这是因为用户触摸屏幕的力量越大,接收信号波形上的衰减缺口也就越宽越深。目前在所有触摸屏中只有声波触摸屏具有能感知触摸压力这个性能,有了这个功能,每个触摸点就不仅仅是有触摸和无触摸的两个简单状态,而是成为能感知力的一个模拟量值的开关了。这个功能非常有用,比如在多媒体信息查询软件中,一个按钮就能控制动画或者影像的播放速度。

    红外线式触摸屏

    红外触摸屏在显示器的前面安装一个外框,外框里设计有电路板,从而在屏幕四边排布红外发射管和红外接收管,它们一一对应形成横竖交叉的红外线矩阵。用户在触摸屏幕触摸时,手指或其它物就会挡住经过该位置的横竖红外线,触摸屏扫描时发现并确信有一条红外线受阻后,可能有触摸,同时立刻换到另一坐标再扫描,如果再发现另外一轴也有一条红外线受阻,黄灯亮,表示发现触摸,并将两个发现阻隔的红外对管位置报告给主机,经过计算判断出触摸点在屏幕的位置。

     

    红外触摸屏产品分外挂式和内置式两种。外挂式的安装方法非常简单,是所有触摸屏中安装最方便的,只要用胶或双面胶将框架固定在显示器前面即可,缺点是影响外观。内置式红外触摸屏性能更加稳定,影响外观程度小。

    红外线式触摸屏特点

    红外触摸屏也同样不受电流、电压和静电干扰,适宜于某些恶劣的环境。其主要优点是价格低廉、安装方便,可以用在各档次的计算机上。此外,由于没有电容充放电过程,响应速度比电容式快,但分辨率较低。

    红外触摸屏的优点是可用手指、笔或任何可阻挡光线的物体来触摸。

    3个技术难点:

    环境光因素,红外接收管有最小灵敏度和最大光照度之间的工作范围,但是触摸屏产品却不能限制使用范围,从黑暗的歌厅包房到海南岛高强度阳光下的户外使用,作为产品,它必须适应。

    快速检测,红外触摸屏一般尺寸最少也有64套红外对管,也就是说至少要求在0.4毫秒内就要完成一条红外线的检测。

    周围的反射、折射、干扰,红外发射管有一个发射角,接收管有较大范围的接收角,如果周围反射到一定程度,你会发现手指放在什么地方也阻挡不住信号。

    要解决这些问题,选择模拟方式最大的好处是可以分析提高触摸屏的分辨率,但是抗干扰能力比不上脉冲方式;选择脉冲方式虽然抗干扰能力强,但是存在脉冲方式在接收方需要一个响应过程时间的问题,而触摸屏却要求极快的速度,因此要在自适应电路、单片机软件、模具设计、透光材料选择等几个方面要有技术突破。

    红外触摸屏靠多对红外发射和接收对管来工作,红外对管性能和寿命都比较可靠,任何阻挡光线的物体都可用来作触摸物,不过红外触摸屏使用传感器数目将近100对,并且共用外围电路,这就要求传感器不仅本身性能好,还要求将近100对的红外二极管“光-电阻特性”和“结电容”都保持一致。实际应用中,万一有哪一对出现故障,可以在上电自检过程中发现并在此后加以忽略,靠邻近的红外线代替,由于每一对红外线只“监管”约6mm左右的窄带,而手指通常在15mm左右粗细,用户是察觉不到的。但如果生产过程没有对红外发射管进行老化测试,没有很好的质量管理体系,将近100对的传感器,很快就不是一对两对“掉队”的问题了,总体寿命也就难以保证。

    本文PDF下载:https://files.cnblogs.com/Tty725/触摸屏的分类与实现原理.pdf

    Tty725 说:
    欢迎转载,但请注明内容的来源或URL;
    [转]”篇章,必须保留原始来源且勿添加本blog指向。
  • 相关阅读:
    CSS中:display:none与visible:hidden的区别
    $(function(){})和$(document).ready(function(){}) 的用法
    JavaScript 全选函数的实现
    HTML:关于a标签的target属性
    CSS:给 input 中 type="text" 设置CSS样式
    JavaScript中“javascript:void(0) ”是什么意思
    Oracle数据库——数据库安全性管理
    使用JavaScript根据从后台获取来的数据打开一个新的页面
    java reflect反射---Java高级开发必须懂的
    Java 类加载机制
  • 原文地址:https://www.cnblogs.com/Tty725/p/1971580.html
Copyright © 2011-2022 走看看