1.vgg_segnet
from keras.models import * from keras.layers import * from keras.activations import * import keras.backend as K import keras IMAGE_ORDERRING='channels_last' #1.encoder_0.5net def convnet_encoder(input_height=416,input_width=416,pretained='imagenet'): img_input=Input(shape=(input_height,input_width,3)) x=Conv2D(64,(3,3),activation='relu',padding='same',name='block1_conv1')(img_input) x=Conv2D(64,(3,3),activation='relu',padding='same',name='block1_conv2')(x) x=MaxPooling2D((2,2),strides=(2,2),name='block_pool')(x) f1=x x=Conv2D(128,(3,3),activation='relu',padding='same',name='block2_conv1')(x) x=Conv2D(128,(3,3),activation='relu',padding='same',name='block2_conv2')(x) x=MaxPooling2D((2,2),strides=(2,2),name='block2_pool')(x) f2=x x=Conv2D(256,(3,3),activation='relu',padding='same',name='block3_conv1')(x) x=Conv2D(256,(3,3),activation='relu',padding='same',name='block3_conv2')(x) x=Conv2D(256,(3,3),activation='relu',padding='same',name='block3_conv3')(x) x=MaxPooling2D((2,2),strides=(2,2),name='block3_pool')(x) f3=x x=Conv2D(512,(3,3),activation='relu',padding='same',name='block4_conv1')(x) x=Conv2D(512,(3,3),activation='relu',padding='same',name='block4_conv2')(x) x=Conv2D(512,(3,3),activation='relu',padding='same',name='block4_conv3')(x) x=MaxPooling2D((2,2),strides=(2,2),name='block4_pool')(x) f4=x x=Conv2D(1024,(3,3),activation='relu',padding='same',name='block5_conv1')(x) x=Conv2D(1024,(3,3),activation='relu',padding='same',name='block5_conv2')(x) x=Conv2D(1024,(3,3),activation='relu',padding='same',name='block5_conv3')(x) x=MaxPooling2D((2,2),strides=(2,2),name='block5_pool')(x) f5=x return img_input,[f1,f2,f3,f4,f5]
#2.decoder_0.5net def segnet_decoder(output_input,n_classes): x=ZeroPadding2D((1,1))(output_input) x=Conv2D(512,(3,3),padding='valid')(x) x=BatchNormalization()(x) x=UpSampling2D((2,2))(x) x=ZeroPadding2D((1,1))(x) x=Conv2D(256,(3,3),padding='valid')(x) x=BatchNormalization()(x) x=UpSampling2D((2,2))(x) x=ZeroPadding2D((1,1))(x) x=Conv2D(128,(3,3),padding='valid')(x) x=BatchNormalization()(x) x=UpSampling2D((2,2) )(x) x=ZeroPadding2D((1,1))(x) x=Conv2D(64,(3,3),padding='valid')(x) x=BatchNormalization()(x) x=Conv2D(n_classes,(3,3),padding='same')(x) return x
#3.vgg_segnet_net def convnet_segnet(n_classes,input_height=416,input_width=416): img_input,levels=convnet_encoder(input_height=input_height,input_width=input_width) feat=levels[3]#f4 print(feat.shape) x=segnet_decoder(feat,n_classes) #将结果reshape到2维,就是每个像素点的预测类别 x=Reshape((int(input_height/2)*int(input_width/2),-1))(x)#(每个像素点,类别onehot) out=Softmax()(x)#概率最大类别 model=Model(img_input,out)#构建模型(输入输出) model.model_name='convnet_segnet' return model #查看网络结构 model=convnet_segnet(2,input_height=416,input_width=416) model.summary()