zoukankan      html  css  js  c++  java
  • poj 3176 Cow Bowling(dp基础)

    Description

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 
    
              7
    
    
    
            3   8
    
    
    
          8   1   0
    
    
    
        2   7   4   4
    
    
    
      4   5   2   6   5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 
    
    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N 
    
    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    Hint

    Explanation of the sample: 
    
              7
    
             *
    
            3   8
    
           *
    
          8   1   0
    
           *
    
        2   7   4   4
    
           *
    
      4   5   2   6   5
    The highest score is achievable by traversing the cows as shown above.

    Source

     
     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 using namespace std;
     5 #define N 356
     6 int mp[N][N];
     7 int dp[N][N];
     8 int main()
     9 {
    10     int n;
    11     while(scanf("%d",&n)==1){
    12         memset(dp,0,sizeof(dp));
    13         for(int i=1;i<=n;i++){
    14             for(int j=1;j<=i;j++){
    15                 scanf("%d",&mp[i][j]);
    16             }
    17         }
    18         dp[1][1]=mp[1][1];
    19         for(int i=2;i<=n;i++){
    20             for(int j=1;j<=i;j++){
    21                 dp[i][j]=max(dp[i-1][j-1]+mp[i][j],dp[i-1][j]+mp[i][j]);
    22             }
    23         }
    24         int maxn=-1;
    25         for(int i=1;i<=n;i++){
    26             maxn=max(maxn,dp[n][i]);
    27         }
    28         printf("%d
    ",maxn);
    29     }
    30     return 0;
    31 }
    View Code
  • 相关阅读:
    传统文化相关词组(陆续补充)
    面试题 17.09. 第 k 个数
    1544. 整理字符串
    SQL Server 2008 R2 数据库之间的数据同步热备份
    SQLServer数据库同步准实时解决方案
    SQL Server 用链接服务器 同步MySQL
    SqlServer数据库同步方案详解(包括跨网段)
    键值修饰符v-on:keyup.enter
    事件修饰符
    内连处理器里的方法2.html
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/4776633.html
Copyright © 2011-2022 走看看