zoukankan      html  css  js  c++  java
  • poj 3176 Cow Bowling(dp基础)

    Description

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 
    
              7
    
    
    
            3   8
    
    
    
          8   1   0
    
    
    
        2   7   4   4
    
    
    
      4   5   2   6   5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 
    
    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N 
    
    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    Hint

    Explanation of the sample: 
    
              7
    
             *
    
            3   8
    
           *
    
          8   1   0
    
           *
    
        2   7   4   4
    
           *
    
      4   5   2   6   5
    The highest score is achievable by traversing the cows as shown above.

    Source

     
     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 using namespace std;
     5 #define N 356
     6 int mp[N][N];
     7 int dp[N][N];
     8 int main()
     9 {
    10     int n;
    11     while(scanf("%d",&n)==1){
    12         memset(dp,0,sizeof(dp));
    13         for(int i=1;i<=n;i++){
    14             for(int j=1;j<=i;j++){
    15                 scanf("%d",&mp[i][j]);
    16             }
    17         }
    18         dp[1][1]=mp[1][1];
    19         for(int i=2;i<=n;i++){
    20             for(int j=1;j<=i;j++){
    21                 dp[i][j]=max(dp[i-1][j-1]+mp[i][j],dp[i-1][j]+mp[i][j]);
    22             }
    23         }
    24         int maxn=-1;
    25         for(int i=1;i<=n;i++){
    26             maxn=max(maxn,dp[n][i]);
    27         }
    28         printf("%d
    ",maxn);
    29     }
    30     return 0;
    31 }
    View Code
  • 相关阅读:
    【Vue原理】Compile
    vue v-cloak 的作用和用法
    vue中template的作用及使用
    Vue-router 嵌套路由
    Vue keep-alive实践总结
    Vuex入门(2)—— state,mapState,...mapState对象展开符详解
    mysql允许外部连接设置
    Swagger入门教程
    牛客枚举题---铺地毯
    牛客区间求和、枚举、贪心题---数学考试
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/4776633.html
Copyright © 2011-2022 走看看