zoukankan      html  css  js  c++  java
  • poj 3176 Cow Bowling(dp基础)

    Description

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 
    
              7
    
    
    
            3   8
    
    
    
          8   1   0
    
    
    
        2   7   4   4
    
    
    
      4   5   2   6   5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 
    
    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N 
    
    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    Hint

    Explanation of the sample: 
    
              7
    
             *
    
            3   8
    
           *
    
          8   1   0
    
           *
    
        2   7   4   4
    
           *
    
      4   5   2   6   5
    The highest score is achievable by traversing the cows as shown above.

    Source

     
     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 using namespace std;
     5 #define N 356
     6 int mp[N][N];
     7 int dp[N][N];
     8 int main()
     9 {
    10     int n;
    11     while(scanf("%d",&n)==1){
    12         memset(dp,0,sizeof(dp));
    13         for(int i=1;i<=n;i++){
    14             for(int j=1;j<=i;j++){
    15                 scanf("%d",&mp[i][j]);
    16             }
    17         }
    18         dp[1][1]=mp[1][1];
    19         for(int i=2;i<=n;i++){
    20             for(int j=1;j<=i;j++){
    21                 dp[i][j]=max(dp[i-1][j-1]+mp[i][j],dp[i-1][j]+mp[i][j]);
    22             }
    23         }
    24         int maxn=-1;
    25         for(int i=1;i<=n;i++){
    26             maxn=max(maxn,dp[n][i]);
    27         }
    28         printf("%d
    ",maxn);
    29     }
    30     return 0;
    31 }
    View Code
  • 相关阅读:
    java学习的第三天
    java学习的第二天
    java学习的第一天
    兼容性测试2
    兼容性测试
    安全性测试
    界面测试
    功能性测试
    简历小技巧
    day13
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/4776633.html
Copyright © 2011-2022 走看看