zoukankan      html  css  js  c++  java
  • poj 2229 Sumsets(dp 或 数学)

    Description

    Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7: 
    
    1) 1+1+1+1+1+1+1 
    2) 1+1+1+1+1+2 
    3) 1+1+1+2+2 
    4) 1+1+1+4 
    5) 1+2+2+2 
    6) 1+2+4 
    
    Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000). 

    Input

    A single line with a single integer, N.

    Output

    The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).

    Sample Input

    7

    Sample Output

    6

    Source

     

    如果i为奇数,肯定有一个1,把f[i-1]的每一种情况加一个1就得到fi,所以f[i]=f[i-1]

    如果i为偶数,如果有1,至少有两个,则f[i-2]的每一种情况加两个1,就得到i,如果没有1,则把分解式中的每一项除2,则得到f[i/2]

    所以f[i]=f[i-2]+f[i/2]

    由于只要输出最后9个数位,别忘记模1000000000

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #include<stdlib.h>
     6 #include<cmath>
     7 using namespace std;
     8 #define N 1010006
     9 #define MOD 1000000000
    10 int n;
    11 int dp[N];
    12 void init(){
    13     
    14     dp[1]=1;
    15     dp[2]=2;
    16     for(int i=3;i<N;i++){
    17         if(i&1){
    18             dp[i]=dp[i-1];
    19         }
    20         else{
    21             dp[i]=dp[i-1]+dp[i/2];
    22             dp[i]%=MOD;
    23         }
    24     }
    25 }
    26 int main()
    27 {
    28     init();
    29     while(scanf("%d",&n)==1){
    30         
    31         printf("%d
    ",dp[n]);
    32     
    33     }
    34     return 0;
    35 }
    View Code
  • 相关阅读:
    linux下最大文件数
    Apache实现Web Server负载均衡
    linux环境变量
    iptables用法
    read 不回显的方法
    Linux间的进程通信;以及子进程的创建
    Linux总结
    自实现部分string类的功能
    C语言 (内存) 四道经典题目
    STL 容器(vector 和 list )
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/4783438.html
Copyright © 2011-2022 走看看