zoukankan      html  css  js  c++  java
  • 机器学习10—K-均值聚类学习笔记

    机器学习实战之K-Means算法

    test10.py

    #-*- coding:utf-8
    
    
    import sys
    sys.path.append("kMeans.py")
    
    import kMeans
    from numpy import *
    
    # datMat = mat(kMeans.loadDataSet('testSet.txt'))
    # mindata = min(datMat[:, 0])
    # print(mindata)
    #
    #
    # ranCentK = kMeans.randCent(datMat, 2)
    # print(ranCentK)
    #
    # dis = kMeans.distEclud(datMat[0], datMat[1])
    # print(dis)
    
    
    # datMat3 = mat(kMeans.loadDataSet('testSet2.txt'))
    # centList, myNewAssments = kMeans.biKmeans(datMat3, 3)
    # print(centList)
    
    
    geoResults = kMeans.geoGrab('1 VA Center', 'Augusta, ME')
    print(geoResults)
    
    res = geoResults['ResultSet']['Error']
    print(res)
    
    
    
    print('over!!!')

    kMeans.py

    '''
    Created on Feb 16, 2011
    k Means Clustering for Ch10 of Machine Learning in Action
    @author: Peter Harrington
    '''
    from numpy import *
    
    def loadDataSet(fileName):      #general function to parse tab -delimited floats
        dataMat = []                #assume last column is target value
        fr = open(fileName)
        for line in fr.readlines():
            curLine = line.strip().split('	')
            fltLine = list(map(float,curLine)) #map all elements to float()
            dataMat.append(fltLine)
        return dataMat
    
    def distEclud(vecA, vecB):
        return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)
    
    def randCent(dataSet, k):
        n = shape(dataSet)[1]
        centroids = mat(zeros((k,n)))#create centroid mat
        for j in range(n):#create random cluster centers, within bounds of each dimension
            minJ = min(dataSet[:,j])
            rangeJ = float(max(dataSet[:,j]) - minJ)
            centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
        return centroids
    
    def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
        m = shape(dataSet)[0]
        clusterAssment = mat(zeros((m,2)))#create mat to assign data points
                                          #to a centroid, also holds SE of each point
        centroids = createCent(dataSet, k)
        clusterChanged = True
        while clusterChanged:
            clusterChanged = False
            for i in range(m):#for each data point assign it to the closest centroid
                minDist = inf; minIndex = -1
                for j in range(k):
                    distJI = distMeas(centroids[j,:],dataSet[i,:])
                    if distJI < minDist:
                        minDist = distJI; minIndex = j
                if clusterAssment[i,0] != minIndex: clusterChanged = True
                clusterAssment[i,:] = minIndex,minDist**2
            print(centroids)
            for cent in range(k):#recalculate centroids
                ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
                centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
        return centroids, clusterAssment
    
    def biKmeans(dataSet, k, distMeas=distEclud):
        m = shape(dataSet)[0]
        clusterAssment = mat(zeros((m,2)))
        centroid0 = mean(dataSet, axis=0).tolist()[0]
        centList =[centroid0] #create a list with one centroid
        for j in range(m):#calc initial Error
            clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
        while (len(centList) < k):
            lowestSSE = inf
            for i in range(len(centList)):
                ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i
                centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
                sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum
                sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
                print("sseSplit, and notSplit: ",sseSplit,sseNotSplit)
                if (sseSplit + sseNotSplit) < lowestSSE:
                    bestCentToSplit = i
                    bestNewCents = centroidMat
                    bestClustAss = splitClustAss.copy()
                    lowestSSE = sseSplit + sseNotSplit
            bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
            bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
            print('the bestCentToSplit is: ',bestCentToSplit)
            print('the len of bestClustAss is: ', len(bestClustAss))
            centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids
            centList.append(bestNewCents[1,:].tolist()[0])
            clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
        return mat(centList), clusterAssment
    
    import urllib
    
    import json
    def geoGrab(stAddress, city):
        apiStem = 'http://where.yahooapis.com/geocode?'  #create a dict and constants for the goecoder
        params = {}
        params['flags'] = 'J'#JSON return type
        params['appid'] = 'aaa0VN6k'
        params['location'] = '%s %s' % (stAddress, city)
        url_params = urllib.parse.urlencode(params)
        yahooApi = apiStem + url_params      #print url_params
        print(yahooApi)
        c = urllib.request.urlopen(yahooApi)
        return json.loads(c.read())
    
    from time import sleep
    def massPlaceFind(fileName):
        fw = open('places.txt', 'w')
        for line in open(fileName).readlines():
            line = line.strip()
            lineArr = line.split('	')
            retDict = geoGrab(lineArr[1], lineArr[2])
            if retDict['ResultSet']['Error'] == 0:
                lat = float(retDict['ResultSet']['Results'][0]['latitude'])
                lng = float(retDict['ResultSet']['Results'][0]['longitude'])
                print("%s	%f	%f" % (lineArr[0], lat, lng))
                fw.write('%s	%f	%f
    ' % (line, lat, lng))
            else: print("error fetching")
            sleep(1)
        fw.close()
    
    def distSLC(vecA, vecB):#Spherical Law of Cosines
        a = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180)
        b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) * cos(pi * (vecB[0,0]-vecA[0,0]) /180)
        return arccos(a + b)*6371.0 #pi is imported with numpy
    
    import matplotlib
    import matplotlib.pyplot as plt
    def clusterClubs(numClust=5):
        datList = []
        for line in open('places.txt').readlines():
            lineArr = line.split('	')
            datList.append([float(lineArr[4]), float(lineArr[3])])
        datMat = mat(datList)
        myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)
        fig = plt.figure()
        rect=[0.1,0.1,0.8,0.8]
        scatterMarkers=['s', 'o', '^', '8', 'p', 'd', 'v', 'h', '>', '<']
        axprops = dict(xticks=[], yticks=[])
        ax0=fig.add_axes(rect, label='ax0', **axprops)
        imgP = plt.imread('Portland.png')
        ax0.imshow(imgP)
        ax1=fig.add_axes(rect, label='ax1', frameon=False)
        for i in range(numClust):
            ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
            markerStyle = scatterMarkers[i % len(scatterMarkers)]
            ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)
        ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300)
        plt.show()
  • 相关阅读:
    python--异常处理
    Codeforces 1499D
    Codeforces 1263E
    Codeforces 1493D
    Codeforces 1492D
    Codeforces 1490G
    Codeforces 1487E
    Codeforces 1485D
    Codeforces 1485C
    P6917 [ICPC2016 WF]Balanced Diet
  • 原文地址:https://www.cnblogs.com/Vae1990Silence/p/8527674.html
Copyright © 2011-2022 走看看