zoukankan      html  css  js  c++  java
  • HNOI2012 永无乡

    题意

    给定(n)个连通块,有两种操作:

    • 合并两个连通块
    • 查询某个元素所在连通块内第(k)大的值

    解法

    合并连通块( o)启发式合并,查询第(k)( o)平衡树,权值线段树

    当然这道题可以用线段树合并写,但是用FHQ_Treap来写实在是太爽了

    由于FHQ_Treap本身就可以维护连通块(一颗树就是一个连通块),还能顺带维护连通块的size与其中的元素,简直是为这道题量身定制的

    对于合并两个连通块的操作,我们遍历较小的那个连通块,将其中的元素一个个加进大连通块中,并把合并以后得到的根在并查集中设为原来连通块根的祖先


    代码

    #include <ctime>
    #include <cstdio>
    #include <cstdlib>
    #include <iostream>
    
    using namespace std;
    
    const int N = 1e5 + 10;
    
    int read();
    
    int n, m;
    
    int fa[N], mp[N];
    
    char op[10];
    
    struct FHQ_Treap {
    #define ls(x) t[x].ch[0]
    #define rs(x) t[x].ch[1]
    
    	int cnt;
    	int a, b;
    	
    	struct node {
    		int val, rnd, siz;
    		int ch[2];
    		node() { ch[0] = ch[1] = 0; }	
    	} t[N];
    	
    	FHQ_Treap() : cnt(0) {}
    	
    	void update(int x) {
    		t[x].siz = t[ls(x)].siz + t[rs(x)].siz + 1;	
    	}
    	
    	int newnode(int v) {
    		++cnt;
    		t[cnt].val = v, t[cnt].rnd = rand() << 15 | rand(), t[cnt].siz = 1;
    		return cnt; 
    	}
    	
    	void split(int x, int k, int& lt, int& rt) {
    		if (!x)
    			return lt = rt = 0, void();
    		if (t[x].val <= k)
    			lt = x, split(rs(x), k, rs(x), rt);
    		else
    			rt = x, split(ls(x), k, lt, ls(x));
    		update(x);
    	}
    	
    	int merge(int x, int y) {
    		if (!x || !y)
    			return x | y;
    		if (t[x].rnd < t[y].rnd) {
    			rs(x) = merge(rs(x), y); 
    			return update(x), x;
    		} else {
    			ls(y) = merge(x, ls(y));	
    			return update(y), y;
    		}
    	}
    	
    	int kth(int x, int k) {
    		if (k > t[x].siz)  return 0;
    		int p = x;	
    		while (true) {
    			if (k <= t[ls(p)].siz)  p = ls(p);
    			else if (k == t[ls(p)].siz + 1)  return t[p].val;
    			else k -= t[ls(p)].siz + 1, p = rs(p);
    		}
    	}
    	
    	int insert(int x, int y) {
    		split(y, t[x].val, a, b);
    		return merge(merge(a, x), b);
    	}
    	
    	void DFS(int x, int& y) {
    		if (ls(x))  DFS(ls(x), y);
    		if (rs(x))  DFS(rs(x), y);
    		y = insert(x, y);
    	}
    	
    	int combine(int x, int y) {
    		DFS(x, y);
    		return y;
    	}
    	
    #undef ls
    #undef rs	
    } tr;
    
    inline int get(int x) {
    	return x == fa[x] ? x : fa[x] = get(fa[x]);	
    }
    
    void modify(int u, int v) {
    	if (get(u) ^ get(v)) {
    		u = fa[u], v = fa[v];
    		if (tr.t[u].siz > tr.t[v].siz)  swap(u, v);
    		int nr = tr.combine(u, v);
    		fa[u] = fa[v] = fa[nr] = nr;
    	}
    }
    
    int main() {
    	
    	srand(time(0));
    	
    	n = read(), m = read();	
    	
    	mp[0] = -1;
    	for (int i = 1; i <= n; ++i) {
    		int v = read();
    		fa[i] = mp[v] = i;
    		tr.newnode(v);
    	}
    	
    	for (int i = 1; i <= m; ++i)  modify(read(), read());
    	
    	int q = read();
    	while (q--) {
    		scanf("%s", op + 1);
    		if (op[1] == 'B') {
    			modify(read(), read());
    		} else {
    			int u = read(), k = read();
    			printf("%d
    ", mp[tr.kth(get(u), k)]);
    		}
    	}
    	
    	return 0;
    }
    
    int read() {
    	int x = 0, c = getchar();
    	while (c < '0' || c > '9')    c = getchar();
    	while (c >= '0' && c <= '9')  x = x * 10 + c - 48, c = getchar();
    	return x;	
    }
    
  • 相关阅读:
    SetThreadAffinityMask设置线程亲缘性
    Delphi 获取北京时间(通过百度和timedate网站)
    delphi 实现微信开发
    翻书的效果:FMX.TSwipeTransitionEffect Animation
    [每日一题] OCP1z0-047 :2013-07-15 drop column
    Delphi获取当前系统时间(使用API函数GetSystemTime)
    Delphi代码中嵌入ASM代码
    Delphi Jpg和Gif转Bmp
    Delphi RichEdit的内容保存为图片
    Delphi 实现任务栏多窗口图标显示
  • 原文地址:https://www.cnblogs.com/VeniVidiVici/p/11586142.html
Copyright © 2011-2022 走看看