这个题就是一个半平面交加二分,因为敌人每次如果炸k个瞭望塔,那么连续的k个肯定比分散的k个要更优,所以每次二分答案k,将点每隔k个连一条新的线,判断这些新的线有无半平面交即可。
下面上代码
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
const int M=1e5+10;
const db eps=1e-7;
struct point{
db x,y;
point(db a=0,db b=0):x(a),y(b){}
void in(){scanf("%lf%lf",&x,&y);}
}pp[M];
point operator +(point a,point b){return point(a.x+b.x,a.y+b.y);}
point operator -(point a,point b){return point(a.x-b.x,a.y-b.y);}
point operator *(point a,db b){return point(a.x*b ,a.y*b );}
point operator /(point a,db b){return point(a.x/b ,a.y/b );}
db cross(point a,point b){return a.x*b.y-a.y*b.x;}
db dot (point a,point b){return a.x*b.x+a.y*b.y;}
struct line{
point p,v;
db ang;
line(){}
line(point a,point b):p(a),v(b){ang=atan2(v.y,v.x);}
bool operator <(line a)const{return ang<a.ang;}
point getp(db t){return p+v*t;}
}l[M];
bool onleft(line le,point p){
return cross(le.v,p-le.p)>0;
}
point getlinecut(line a,line b){
point u=a.p-b.p;
db t=cross(b.v,u)/cross(a.v,b.v);
return a.getp(t);
}
int fi,la;
point p[M];
line q[M];
int n;
void init(int mid){for(int i=0;i<n;i++){l[i]=line(pp[i],pp[i]-pp[(i+mid+1)%n]);}}
//二分的mid,每隔mid个连一条线
bool halfcut(int mid){
init(mid);
sort(l,l+n);
q[fi=la=0]=l[0];
for(int i=1;i<n;i++){
while(fi<la&&!onleft(l[i],p[la-1])) --la;
while(fi<la&&!onleft(l[i],p[fi ])) ++fi;
q[++la]=l[i];
if(fabs(cross(q[la].v,q[la-1].v))<eps){
--la;if(onleft(q[la],l[i].p)) q[la]=l[i];
}
if(fi<la) p[la-1]=getlinecut(q[la],q[la-1]);
}
while(fi<la&&!onleft(q[fi],p[la-1])) --la;
if(la-fi<=1) return 0;return 1;
}
int le,ri;
int main()
{
while(scanf("%d",&n)==1&&n){
for(int i=0;i<n;i++) pp[i].in();
le=1,ri=n;
while(le<=ri){
int mid=(le+ri)>>1;
if(halfcut(mid)) le=mid+1;
else ri=mid-1;
}
printf("%d
",le);
}
return 0;
}