zoukankan      html  css  js  c++  java
  • 第四讲 树(中)

    04-树4:是否同一棵二叉搜索树
    Description:

    给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。

    Input:

    输入包含若干组测试数据。每组数据的第1行给出两个正整数N≤10和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。最后L行,每行给出N个插入的元素,属于L个需要检查的序列。

    简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。

    Output:

    对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。

    SampleInput:

    4 2
    3 1 4 2
    3 4 1 2
    3 2 4 1
    2 1
    2 1
    1 2
    0

    SampleOutput:

    Yes
    No
    No

    Codes:
    //#define LOCAL
    
    #include <cstdio>
    #include <cstdlib>
    
    typedef struct tN *tr;
    struct tN { int d, f; tr l, r; };
    
    tr newN(int d) {
        tr T = (tr)malloc(sizeof(tN));
        T->d = d, T->f = 0, T->l = T->r = NULL;
        return T;
    }
    
    tr insert(tr T, int d) {
        if(!T) T = newN(d);
        else {
            if(d > T->d) T->r = insert(T->r, d);
            else T->l = insert(T->l, d);
        }
        return T;
    }
    
    tr build(int N) {
        tr T; int i, d;
        scanf("%d", &d);
        T = newN(d);
        for(i=1; i<N; ++i) { scanf("%d", &d); T = insert(T, d); }
        return T;
    }
    
    bool check(tr T, int d) {
        if(T->f) {
            if(d < T->d) return check(T->l, d);
            else if(d > T->d) return check(T->r, d);
        } else {
            if(d == T-> d) { T->f = 1; return true; }
            else return false;
        }
    }
    
    int same(tr T, int N) {
        int d, i, f = 0;
        scanf("%d", &d);
        if(d != T->d) f = 1;
        else T->f = 1;
        for(i=1; i<N; ++i) {
            scanf("%d", &d);
            if(!f && !check(T, d)) f = 1;
        }
        if(f) return 0;
        else return 1;
    }
    
    void reset(tr T) {
        if(T->l) reset(T->l);
        if(T->r) reset(T->r);
        T->f = 0;
    }
    
    void freeT(tr T) {
        if(T->l) freeT(T->l);
        if(T->r) freeT(T->r);
        free(T);
    }
    
    int main()
    {
        #ifdef LOCAL
            freopen("E:\Temp\input.txt", "r", stdin);
            freopen("E:\Temp\output.txt", "w", stdout);
        #endif
    
        int i, N, L; tr T;
        scanf("%d", &N);
        while(N) {
            scanf("%d", &L);
            T = build(N);
            for(i=0; i<L; ++i) {
                if(same(T, N)) printf("Yes
    ");
                else printf("No
    ");
                reset(T);
            }
            freeT(T); scanf("%d", &N);
        }
    
        return 0;
    }
    
    PAT-1066:Root of AVL Tree.
    Description:

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

    Input:

    Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

    Output:

    For each test case, print ythe root of the resulting AVL tree in one line.

    SampleInput1:

    5
    88 70 61 96 120

    SampleOutput1:

    70

    SampleInput2:

    7
    88 70 61 96 120 90 65

    SampleOutput2:

    88

    Codes:
    //#define LOCAL
    
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    
    struct N { 
        int v, w; N *l, *r; 
        N(int vs, N* ls, N* rs) : v(vs), l(ls), r(rs), w(0) {}
    };
    N *nil = new N(0, NULL, NULL); N *h = nil;
    
    void leftR(N *&h) {
        N *t = h->r; h->r = t->l; t->l = h;
        h = t; h->l->w = max(h->l->r->w, h->l->l->w)+1;
        h->w = max(h->r->w, h->l->w)+1;
    }
    
    void rightR(N *&h) {
        N *t = h->l; h->l = t->r; t->r = h;
        h = t; h->r->w = max(h->r->r->w, h->r->l->w)+1;
        h->w = max(h->r->w, h->l->w)+1;
    }
    
    void insert(N *&h, int v) {
        if(h == nil) h = new N(v, nil, nil);
        else if(v > h->v) {
            insert(h->r, v);
            if(h->r->w-h->l->w == 2) {
                if(v > h->r->v) leftR(h);
                else { rightR(h->r); leftR(h); }
            }
        } else {
            insert(h->l, v);
            if(h->l->w-h->r->w == 2) {
                if(v <= h->l->v) rightR(h);
                else { leftR(h->l); rightR(h); }
            }
        }
        h->w = max(h->l->w, h->r->w)+1;
    }
    
    int main()
    {
        #ifdef LOCAL
            freopen("E:\Temp\input.txt", "r", stdin);
            freopen("E:\Temp\output.txt", "w", stdout);
        #endif
    
        int a, n;
        scanf("%d", &n);
        while(n--) {
            scanf("%d", &a);
            insert(h, a);
        }
        printf("%d
    ", h->v);
    
        return 0;
    }    
    
    PAT-1064:Complete Binary Search Tree.
    Description:

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

    The left subtree of a node contains only nodes with keys less than the node's key.
    The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
    Both the left and right subtrees must also be binary search trees.
    A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

    Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

    Input:

    Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

    Output:

    For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

    SampleInput:

    10
    1 2 3 4 5 6 7 8 9 0

    SampleOutput:

    6 3 8 1 5 7 9 0 2 4

    Codes:
    //#define LOCAL
    
    #include <cstdio>
    #include <vector>
    #include <algorithm>
    using namespace std;
    
    #define M 1010
    int i, n, A[M], B[M]; vector<int> pO;
    
    void pT(int r) {
        if(r > n) return;
        pT(2*r); pO.push_back(r); pT(2*r+1);
    }
    
    int main()
    {
        #ifdef LOCAL
            freopen("E:\Temp\input.txt", "r", stdin);
            freopen("E:\Temp\output.txt", "w", stdout);
        #endif
    
        scanf("%d", &n);
        for(i=0; i<n; ++i) scanf("%d", &A[i]);
    
        sort(A, A+n); pT(1);
        for(i=0; i<pO.size(); ++i) B[pO[i]] = A[i];
        for(i=1; i<n; ++i) printf("%d ", B[i]);
        printf("%d
    ", B[n]);
    
        return 0;
    }
  • 相关阅读:
    优化MySchool数据库(存储过程)
    优化MySchool数据库(事务、视图、索引)
    优化MySchool数据库(四)
    优化MySchool数据库(三)
    SQLAchemy
    python操作mysql
    python队列
    零碎知识
    super深究
    Python操作RabbitMQ
  • 原文地址:https://www.cnblogs.com/VincentValentine/p/6838843.html
Copyright © 2011-2022 走看看