Description
给出一个(n(nleq35000))个数的数列({a_i})和(m(mleq50))。将原数列划分成(m)个连续的部分,每个部分的权值等于其中不同的数的个数。求所有划分方案中,所有部分权值和中的最大值。
Solution
线段树优化DP。
记录(f[k][i])表示将前(i)个数划分为(k)段的最大权值和,(w(i,j))表示([L,R])的权值,那么容易列出转移方程:
[ f[k][i]=max{f[k-1][j]+w(j+1,i)} quad (0leq j leq i-1)$$ 复杂度为$O(n^2m)$。
考虑一下如何简化$w$。记录$a_x$上一次出现的位置为$pre_x$,则$a_x$为$pre_x+1leq i leq x$的$w(i,x)$提供了$1$的贡献。那么我们如果想从$w(i,x-1)$转移到$w(i,x)$,只需对区间$[pre_x+1,x]$加$1$即可。
那么我们要做的就是维护$f[k-1][j]+w(j+1,i)$的区间最值,用线段树即可。第二维由$i$变为$i+1$时,对线段树进行一次区间加即可。
> 时间复杂度$O(nkcdot logn)$。
##Code
```cpp
//The Bakery
#include <cstdio>
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
inline int max(int x,int y) {return x>y?x:y;}
const int N=4e4;
int n,m,a[N];
int pre[N],pre1[N];
#define Ls (p<<1)
#define Rs (p<<1|1)
const int N1=N<<2;
int rt,val[N1]; int add[N1];
void update(int p) {val[p]=max(val[Ls],val[Rs]);}
void addV(int p,int v) {add[p]+=v,val[p]+=v;}
void pushdw(int p) {if(add[p]) addV(Ls,add[p]),addV(Rs,add[p]),add[p]=0;}
int optL,optR;
void ins(int p,int L0,int R0,int v,int type)
{
if(optL<=L0&&R0<=optR)
{
if(type==1) addV(p,v);
else val[p]=v;
return;
}
pushdw(p);
int mid=L0+R0>>1;
if(optL<=mid) ins(Ls,L0,mid,v,type);
if(mid<optR) ins(Rs,mid+1,R0,v,type);
update(p);
}
int query(int p,int L0,int R0)
{
if(optL<=L0&&R0<=optR) return val[p];
pushdw(p);
int mid=L0+R0>>1; int r=0;
if(optL<=mid) r=max(r,query(Ls,L0,mid));
if(mid<optR) r=max(r,query(Rs,mid+1,R0));
return r;
}
int f[N];
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
{
a[i]=read();
pre[i]=pre1[a[i]],pre1[a[i]]=i;
}
rt=1;
for(int k=1;k<=m;k++)
{
for(int i=k;i<=n;i++)
{
optL=pre[i],optR=i-1,ins(rt,0,n,1,1);
optL=0,optR=i-1,f[i]=query(rt,0,n);
}
if(k==m) break;
for(int i=0;i<=n;i++) optL=optR=i,ins(rt,0,n,f[i],2);
}
printf("%d
",f[n]);
return 0;
}
```]