从我开始学习python的时候,我就开始自己总结一个python小技巧的集合。后来当我什么时候在Stack Overflow
或者在某个开源软件里看到一段很酷代码的时候,我就很惊讶:原来还能这么做!,当时我会努力的自己尝试一下这段代码,直到我懂了它的整体思路以后,我就把这段代码加到我的集合里。这篇博客其实就是这个集合整理后一部分的公开亮相。如果你已经是个python大牛,那么基本上你应该知道这里面的大多数用法了,但我想你应该也能发现一些你不知道的新技巧。而如果你之前是一个c,c++,java的程序员,同时在学习python,或者干脆就是一个刚刚学习编程的新手,那么你应该会看到很多特别有用能让你感到惊奇的实用技巧,就像我当初一样。
每一个技巧和语言用法都会在一个个实例中展示给大家,也不需要有其他的说明。我已经尽力把每个例子弄的通俗易懂,但是因为读者对python的熟悉程度不同,仍然可能难免有一些晦涩的地方。所以如果这些例子本身无法让你读懂,至少这个例子的标题在你后面去google搜索的时候会帮到你。
整个集合大概是按照难易程度排序,简单常见的在前面,比较少见的在最后。
1.1 拆箱
>>> a, b, c = 1, 2, 3 >>> a, b, c (1, 2, 3) >>> a, b, c = [1, 2, 3] >>> a, b, c (1, 2, 3) >>> a, b, c = (2 * i + 1 for i in range(3)) >>> a, b, c (1, 3, 5) >>> a, (b, c), d = [1, (2, 3), 4] >>> a 1 >>> b 2 >>> c 3 >>> d 4
1.2 拆箱变量交换
1.3 扩展拆箱(只兼容python3)
1.4 负数索引
1.5 切割列表
1.6 负数索引切割列表
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> a[-4:-2] [7, 8]
1.7指定步长切割列表
1.8 负数步长切割列表
1.9 列表切割赋值
>>> a = [1, 2, 3, 4, 5] >>> a[2:3] = [0, 0] >>> a [1, 2, 0, 0, 4, 5] >>> a[1:1] = [8, 9] >>> a [1, 8, 9, 2, 0, 0, 4, 5] >>> a[1:-1] = [] >>> a [1, 5]
1.10 命名列表切割方式
>>> a = [0, 1, 2, 3, 4, 5] >>> LASTTHREE = slice(-3, None) >>> LASTTHREE slice(-3, None, None) >>> a[LASTTHREE] [3, 4, 5]
1.11 列表以及迭代器的压缩和解压缩
>>> a = [1, 2, 3] >>> b = ['a', 'b', 'c'] >>> z = zip(a, b) >>> z [(1, 'a'), (2, 'b'), (3, 'c')] >>> zip(*z) [(1, 2, 3), ('a', 'b', 'c')]
1.12 列表相邻元素压缩器
1.13 在列表中用压缩器和迭代器滑动取值窗口
>>> def n_grams(a, n): ... z = [iter(a[i:]) for i in range(n)] ... return zip(*z) ... >>> a = [1, 2, 3, 4, 5, 6] >>> n_grams(a, 3) [(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)] >>> n_grams(a, 2) [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)] >>> n_grams(a, 4) [(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
1.14 用压缩器反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4} >>> m.items() [('a', 1), ('c', 3), ('b', 2), ('d', 4)] >>> zip(m.values(), m.keys()) [(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')] >>> mi = dict(zip(m.values(), m.keys())) >>> mi {1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.15 列表展开
>>> a = [[1, 2], [3, 4], [5, 6]] >>> list(itertools.chain.from_iterable(a)) [1, 2, 3, 4, 5, 6] >>> sum(a, []) [1, 2, 3, 4, 5, 6] >>> [x for l in a for x in l] [1, 2, 3, 4, 5, 6] >>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] >>> [x for l1 in a for l2 in l1 for x in l2] [1, 2, 3, 4, 5, 6, 7, 8] >>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]] >>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x] >>> flatten(a) [1, 2, 3, 4, 5, 6, 7, 8]
1.16 生成器表达式
1.17 字典推导
>>> m = {x: x ** 2 for x in range(5)} >>> m {0: 0, 1: 1, 2: 4, 3: 9, 4: 16} >>> m = {x: 'A' + str(x) for x in range(10)} >>> m {0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}
1.18 用字典推导反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4} >>> m {'d': 4, 'a': 1, 'b': 2, 'c': 3} >>> {v: k for k, v in m.items()} {1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.19 命名元组
>>> Point = collections.namedtuple('Point', ['x', 'y']) >>> p = Point(x=1.0, y=2.0) >>> p Point(x=1.0, y=2.0) >>> p.x 1.0 >>> p.y 2.0
1.20 继承命名元组
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])): ... __slots__ = () ... def __add__(self, other): ... return Point(x=self.x + other.x, y=self.y + other.y) ... >>> p = Point(x=1.0, y=2.0) >>> q = Point(x=2.0, y=3.0) >>> p + q Point(x=3.0, y=5.0)
1.21 操作集合
1.22 操作多重集合
1.23 统计在可迭代器中最常出现的元素
1.24 两端都可操作的队列
1.25 有最大长度的双端队列
1.26 可排序词典
1.27 默认词典
1.28 默认字典的简单树状表达
1.29 对象到唯一计数的映射
1.30 最大和最小的几个列表元素
1.31 两个列表的笛卡尔积
1.32 列表组合和列表元素替代组合
1.33 列表元素排列组合
1.34 可链接迭代器
1.35 根据文件指定列类聚