zoukankan      html  css  js  c++  java
  • CF819B Mister B and PR Shifts

    题目

    Some time ago Mister B detected a strange signal from the space, which he started to study.

    After some transformation the signal turned out to be a permutation p of length n or its cyclic shift. For the further investigation Mister B need some basis, that's why he decided to choose cyclic shift of this permutation which has the minimum possible deviation.

    Let's define the deviation of a permutation p as .

    Find a cyclic shift of permutation p with minimum possible deviation. If there are multiple solutions, print any of them.

    Let's denote id k (0 ≤ k < n) of a cyclic shift of permutation p as the number of right shifts needed to reach this shift, for example:

    k = 0: shift p 1, p 2, ... p n, k = 1: shift p n, p 1, ... p n - 1, ..., k = n - 1: shift p 2, p 3, ... p n, p 1.

    Input

    First line contains single integer n (2 ≤ n ≤ 106) — the length of the permutation.

    The second line contains n space-separated integers p 1, p 2, ..., p n (1 ≤ p i ≤ n) — the elements of the permutation. It is guaranteed that all elements are distinct.

    Output

    Print two integers: the minimum deviation of cyclic shifts of permutation p and the id of such shift. If there are multiple solutions, print any of them.

    Examples

    Input

    3
    1 2 3

    Output

    0 0

    Input

    3
    2 3 1

    Output

    0 1

    Input

    3
    3 2 1

    Output

    2 1

    Note

    In the first sample test the given permutation p is the identity permutation, that's why its deviation equals to 0, the shift id equals to 0 as well.

    In the second sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1, 2, 3) equals to 0, the deviation of the 2-nd cyclic shift (3, 1, 2) equals to 4, the optimal is the 1-st cyclic shift.

    In the third sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1, 3, 2) equals to 2, the deviation of the 2-nd cyclic shift (2, 1, 3) also equals to 2, so the optimal are both 1-st and 2-nd cyclic shifts.

    题意

    定义一个全排列 pi 的偏移值为∑ni=1| pi - i | 给你一个全排列,你可以从后面拿k∈[0,n−1]个数放在前面,使得该全排列的偏移值最小,输出这个偏移值和k,如果有多个k任意输出一个

    分析

    我们当前位的数的本身的大小是不变的,而我们每操作一次它的编号 i 就会增大1 。

    那么,对于这次操作偏移值为正数的,结果的总贡献就回少1,也就是ans一共会减少原偏移值为正的数的个数。

    对于此次操作偏移值为非正的,显然对ans的贡献会加1,所以ans的增加量是原偏移值为非正数的数的个数。

    所以,我们要找的就是原偏移值为正的和非正的数的个数。

    然后我们就可以考虑了,经过一次操作,原偏移值为+1的数偏移值都会变为0,所以,原偏移值为正数的数的个数会少掉原偏移值为+1的数的个数。

    而原偏移值为非正数的数的个数会加上原偏移值为+1的数的个数,这也是显然的。所以原偏移值为非正的数的个数不会变少,只会越来越多。

    最后每次我们把第 n-i+1 位的数放到最前面,然后他的改变就直接算就行。

    代码

    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    #define ll long long
    using namespace std;
    const int maxn=3e6+10;
    int a[maxn];
    ll ans,k;
    ll cnt,sum;
    ll one[maxn];
    int main(){
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++){
            scanf("%d",&a[i]);
            int x=a[i]-i;
            if(x<=0){
                sum++;
                ans+=abs(x);
            }
            else{
                cnt++;
                ans+=x;
                one[x]++;
            }
        }
        ll tmp,tmpp=ans;
        if(ans==0){
            printf("0 0
    ");
            return 0;
        }
        for(int i=1;i<n;i++){
            tmp=tmpp;
            tmp-=cnt;
            tmp+=sum;
            cnt-=one[i];
            sum+=one[i];
            ll x=a[n-i+1];
            tmp-=n+1-x;
            sum--;
            if(x>1){
                one[x-1+i]++;
                tmp+=x-1;
                cnt++;
            }
            else sum++;
            if(tmp<ans){
                ans=tmp;
                k=i;
            }
            if(ans==0){
                printf("%d %d
    ",ans,k);
                return 0;
            }
            tmpp=tmp;
        }
        printf("%d %d
    ",ans,k);
        return 0;
    }
  • 相关阅读:
    GOF23设计模式汇总
    获取表单提交MVC错误信息
    Spring.Net
    简单工厂、工厂方法和抽象工厂
    Json和JsonP
    mysql8无法用navicat连接(mysql8加密方式的坑)
    (4.16)mysql备份还原——物理备份之XtraBackup实践
    mysql如何下载历史版本?
    如何测试端口通不通(四种方法)
    linux移动复制删除命令
  • 原文地址:https://www.cnblogs.com/Vocanda/p/12858731.html
Copyright © 2011-2022 走看看