题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=4307
Description
Let A be a 1*N matrix, and each element of A is either 0 or 1. You are to find such A that maximize D=(A*B-C)*AT, where B is a given N*N matrix whose elements are non-negative, C is a given 1*N matrix whose elements are also non-negative, and AT is the transposition of A (i.e. a N*1 matrix).
Input
The first line contains the number of test cases T, followed by T test cases.
For each case, the first line contains an integer N (1<=N<=1000).
The next N lines, each of which contains N integers, illustrating the matrix B. The jth integer on the ith line is B[i][j].
Then one line followed, containing N integers, describing the matrix C, the ith one for C[i].
You may assume that sum{B[i][j]} < 2^31, and sum{C[i]} < 2^31.
Output
For each case, output the the maximum D you may get.
Sample Input
1
3
1 2 1
3 1 0
1 2 3
2 3 7
Sample Output
2
分析
化一下那个矩阵,可以知道,目标是最大化这个:
$$D = sum_{i=1}^N sum_{j=1}^N A_iA_jB_{ij} - sum_{i=1}^NC_i$$
这样就是100多W个点的最大权闭合子图了= =。。
其实式子还可以再化。。 http://blog.csdn.net/weiguang_123/article/details/8077385。
然后就化成了最小割的经典二者选一的模型了,POJ3469。
这我一点都化不来= =。。
代码
#include<cstdio> #include<cstring> #include<queue> #include<algorithm> using namespace std; #define INF (1<<30) #define MAXN 1111 #define MAXM 2222*1111 struct Edge{ int v,cap,flow,next; }edge[MAXM]; int vs,vt,NE,NV; int head[MAXN]; void addEdge(int u,int v,int cap){ edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=0; edge[NE].next=head[u]; head[u]=NE++; edge[NE].v=u; edge[NE].cap=0; edge[NE].flow=0; edge[NE].next=head[v]; head[v]=NE++; } int level[MAXN]; int gap[MAXN]; void bfs(){ memset(level,-1,sizeof(level)); memset(gap,0,sizeof(gap)); level[vt]=0; gap[level[vt]]++; queue<int> que; que.push(vt); while(!que.empty()){ int u=que.front(); que.pop(); for(int i=head[u]; i!=-1; i=edge[i].next){ int v=edge[i].v; if(level[v]!=-1) continue; level[v]=level[u]+1; gap[level[v]]++; que.push(v); } } } int pre[MAXN]; int cur[MAXN]; int ISAP(){ bfs(); memset(pre,-1,sizeof(pre)); memcpy(cur,head,sizeof(head)); int u=pre[vs]=vs,flow=0,aug=INF; gap[0]=NV; while(level[vs]<NV){ bool flag=false; for(int &i=cur[u]; i!=-1; i=edge[i].next){ int v=edge[i].v; if(edge[i].cap!=edge[i].flow && level[u]==level[v]+1){ flag=true; pre[v]=u; u=v; //aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap)); aug=min(aug,edge[i].cap-edge[i].flow); if(v==vt){ flow+=aug; for(u=pre[v]; v!=vs; v=u,u=pre[u]){ edge[cur[u]].flow+=aug; edge[cur[u]^1].flow-=aug; } //aug=-1; aug=INF; } break; } } if(flag) continue; int minlevel=NV; for(int i=head[u]; i!=-1; i=edge[i].next){ int v=edge[i].v; if(edge[i].cap!=edge[i].flow && level[v]<minlevel){ minlevel=level[v]; cur[u]=i; } } if(--gap[level[u]]==0) break; level[u]=minlevel+1; gap[level[u]]++; u=pre[u]; } return flow; } int B[1111][1111],C[1111]; int main(){ int t,n; scanf("%d",&t); while(t--){ scanf("%d",&n); int sum=0; for(int i=1; i<=n; ++i){ for(int j=1; j<=n; ++j){ scanf("%d",&B[i][j]); sum+=B[i][j]; } } for(int i=1; i<=n; ++i){ scanf("%d",&C[i]); } vs=0; vt=n+1; NV=vt+1; NE=0; memset(head,-1,sizeof(head)); for(int i=1; i<=n; ++i){ addEdge(vs,i,C[i]); int tmp=0; for(int j=1; j<=n; ++j) tmp+=B[i][j]; addEdge(i,vt,tmp); for(int j=1; j<=n; ++j){ if(i!=j) addEdge(j,i,B[i][j]); } } printf("%d ",sum-ISAP()); } return 0; }