zoukankan      html  css  js  c++  java
  • Codeforces118D Caesar's Legions(DP)

    题目

    Source

    http://codeforces.com/problemset/problem/118/D

    Description

    Gaius Julius Caesar, a famous general, loved to line up his soldiers. Overall the army had n1 footmen and n2 horsemen. Caesar thought that an arrangement is not beautiful if somewhere in the line there are strictly more that k1 footmen standing successively one after another, or there are strictly more than k2 horsemen standing successively one after another. Find the number of beautiful arrangements of the soldiers.

    Note that all n1 + n2 warriors should be present at each arrangement. All footmen are considered indistinguishable among themselves. Similarly, all horsemen are considered indistinguishable among themselves.

    Input

    The only line contains four space-separated integers n1, n2, k1, k2 (1 ≤ n1, n2 ≤ 100, 1 ≤ k1, k2 ≤ 10) which represent how many footmen and horsemen there are and the largest acceptable number of footmen and horsemen standing in succession, correspondingly.

    Output

    Print the number of beautiful arrangements of the army modulo 100000000 (108). That is, print the number of such ways to line up the soldiers, that no more than k1 footmen stand successively, and no more than k2 horsemen stand successively.

    Sample Input

    2 1 1 10
    2 3 1 2
    2 4 1 1

    Sample Output

    1
    5
    0

    分析

    题目大概说有n1个步兵和n2骑兵要排成一排,连续步兵数不能超过k1个,连续骑兵数不能超过k2个,问有几种排列方案。

    • dp[i][j][x][y]表示已经有i个步兵j个骑兵参与排列且末尾有x个连续步兵或y个连续骑兵的方案数
    • 转移就是通过在末尾放上步兵或者骑兵转移

    代码

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int d[111][111][11][11];
    int main(){
    	int n1,n2,k1,k2;
    	scanf("%d%d%d%d",&n1,&n2,&k1,&k2);
    	d[0][0][0][0]=1;
    	for(int i=0; i<=n1; ++i){
    		for(int j=0; j<=n2; ++j){
    			for(int x=0; x<=k1; ++x){
    				for(int y=0; y<=k2; ++y){
    					if(d[i][j][x][y]==0) continue;
    					if(i!=n1 && x!=k1){
    						d[i+1][j][x+1][0]+=d[i][j][x][y];
    						d[i+1][j][x+1][0]%=100000000;
    					}
    					if(j!=n2 && y!=k2){
    						d[i][j+1][0][y+1]+=d[i][j][x][y];
    						d[i][j+1][0][y+1]%=100000000;
    					}
    				}
    			}
    		}
    	}
    	int ans=0;
    	for(int i=1; i<=k1; ++i) ans+=d[n1][n2][i][0],ans%=100000000;
    	for(int i=1; i<=k2; ++i) ans+=d[n1][n2][0][i],ans%=100000000;
    	printf("%d",ans);
    	return 0;
    }
    
  • 相关阅读:
    三、k8s 核心功能
    【RobotFramework】显式等待、隐式等待、强制等待
    如何快速发现缺陷
    冒烟测试知多少
    【Robot Framework】发送GET与POST请求
    Fastdfs.jar手动安装到本地仓库配置
    Lua架构
    SPU与SKU
    docker环境删除与安装配置
    idea-maven导入出现omitted for duplicate且下标标红
  • 原文地址:https://www.cnblogs.com/WABoss/p/5877044.html
Copyright © 2011-2022 走看看