题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=5730
Description
Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but even that is not enough.
Suppose the shell necklace is a sequence of shells (not a chain end to end). Considering i continuous shells in the shell necklace, I know that there exist different schemes to decorate the i shells together with one declaration of love.
I want to decorate all the shells with some declarations of love and decorate each shell just one time. As a problem, I want to know the total number of schemes.
Input
There are multiple test cases(no more than 20 cases and no more than 1 in extreme case), ended by 0.
For each test cases, the first line contains an integer n, meaning the number of shells in this shell necklace, where 1≤n≤105. Following line is a sequence with n non-negative integer a1,a2,…,an, and ai≤107 meaning the number of schemes to decorate i continuous shells together with a declaration of love.
Output
For each test case, print one line containing the total number of schemes module 313(Three hundred and thirteen implies the march 13th, a special and purposeful day).
Sample Input
3
1 3 7
4
2 2 2 2
0
Sample Output
14
54
分析
题目大概说已知连续i(1<=i<=n)个贝壳组合成一段项链的方案数a[i],求组合成包含n个贝壳的项链的总方案数。
- dp[i]表示组合成包含i个贝壳的项链的总方案数
- 转移:dp[i]=Σdp[i-j]*a[j](1<=j<=i)
直接枚举转移的话时间复杂度O(n2),是不行的。
其实这个转移方程是个比较特殊的卷积形式,可以用FFT去求,但是从1到n依次求的话时间复杂度是O(n2logn)。
而利用CQD分治,每次治的过程累加左半区间内各个已经求得dp值的状态对右半区间各个状态的贡献,这个贡献就是那个方程用FFT求即可,这样时间复杂度由主定理可知是O(nlog2n)。
这是个很经典的题目吧,虽然现在才做。。
代码
#include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; #define INF (1<<30) #define MAXN 333333 const double PI=acos(-1.0); struct Complex{ double real,imag; Complex(double _real,double _imag):real(_real),imag(_imag){} Complex(){} Complex operator+(const Complex &cp) const{ return Complex(real+cp.real,imag+cp.imag); } Complex operator-(const Complex &cp) const{ return Complex(real-cp.real,imag-cp.imag); } Complex operator*(const Complex &cp) const{ return Complex(real*cp.real-imag*cp.imag,real*cp.imag+cp.real*imag); } void setValue(double _real=0,double _imag=0){ real=_real; imag=_imag; } }; int len; Complex wn[MAXN],wn_anti[MAXN]; void FFT(Complex y[],int op){ for(int i=1,j=len>>1,k; i<len-1; ++i){ if(i<j) swap(y[i],y[j]); k=len>>1; while(j>=k){ j-=k; k>>=1; } if(j<k) j+=k; } for(int h=2; h<=len; h<<=1){ Complex Wn=(op==1?wn[h]:wn_anti[h]); for(int i=0; i<len; i+=h){ Complex W(1,0); for(int j=i; j<i+(h>>1); ++j){ Complex u=y[j],t=W*y[j+(h>>1)]; y[j]=u+t; y[j+(h>>1)]=u-t; W=W*Wn; } } } if(op==-1){ for(int i=0; i<len; ++i) y[i].real/=len; } } void Convolution(Complex A[],Complex B[],int n){ for(len=1; len<(n<<1); len<<=1); for(int i=n; i<len; ++i){ A[i].setValue(); B[i].setValue(); } FFT(A,1); FFT(B,1); for(int i=0; i<len; ++i){ A[i]=A[i]*B[i]; } FFT(A,-1); } int a[111111],d[111111]; Complex A[MAXN],B[MAXN]; void cdq(int l,int r){ if(l==r){ d[l]+=a[l]; d[l]%=313; return; } int mid=l+r>>1; cdq(l,mid); for(int i=l; i<=mid; ++i) A[i-l].setValue(d[i]); for(int i=0; i<=r-l; ++i) B[i].setValue(a[i]); for(int i=mid-l+1; i<=r-l; ++i) A[i].setValue(); Convolution(A,B,r-l+1); for(int i=mid+1; i<=r; ++i){ d[i]+=((long long)(A[i-l].real+0.5))%313; d[i]%=313; } cdq(mid+1,r); } int main(){ for(int i=0; i<MAXN; ++i){ wn[i].setValue(cos(2.0*PI/i),sin(2.0*PI/i)); wn_anti[i].setValue(wn[i].real,-wn[i].imag); } int n; while(~scanf("%d",&n) && n){ for(int i=1; i<=n; ++i){ scanf("%d",a+i); a[i]%=313; } memset(d,0,sizeof(d)); cdq(1,n); printf("%d ",d[n]); } return 0; }