链接:传送门
题意:求式子的值,并向下取整
思路:
然后使用矩阵快速幂进行求解
balabala:这道题主要是怎么将目标公式进行化简,化简到一个可以使用现有知识进行解决的一个过程!菜的扣脚...... 还是蒟蒻
/*************************************************************************
> File Name: hdu2256.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月02日 星期二 23时41分58秒
************************************************************************/
#include<bits/stdc++.h>
using namespace std;
const int MOD = 1024;
const int maxn = 4;
#define ll long long
#define mod(x) ((x)%MOD)
struct mat{
int m[maxn][maxn];
}unit;
mat operator *(mat a,mat b){
mat ret;
ll x;
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
x = 0;
for(int k=0;k<2;k++)
x += mod( a.m[i][k]*b.m[k][j] );
ret.m[i][j] = x;
}
}
return ret;
}
void init_unit(){
for(int i=0;i<maxn;i++) unit.m[i][i] = 1;
}
mat pow_mat(mat a,ll x){
mat ret = unit;
while(x){
if(x&1) ret = ret*a;
a = a*a;
x >>= 1;
}
return ret;
}
int main(){
mat s,A;
s.m[0][0] = 5; s.m[0][1] = 0; s.m[1][0] = 2; s.m[1][1] = 0;
A.m[0][0] = 5; A.m[0][1] = 12; A.m[1][0] = 2; A.m[1][1] = 5;
init_unit();
double tt = sqrt(6);
ll t,n;
cin>>t;
while(t--){
cin>>n;
mat tmp = pow_mat(A,n-1);
tmp = tmp*s;
printf("%d
",(2*tmp.m[0][0]-1)%MOD);
}
return 0;
}