zoukankan      html  css  js  c++  java
  • Project Euler 31 1000-digit Fibonacci number( DP )


    题意:在无限硬币的情况下能组成200的方案数有多少个

    思路:DP,设数组 dp[ n ] [ k ] 代表前 n 种硬币能够组成 k 元的方案数,那么就能得到 dp [ n ] [ k ] = dp [ n - 1 ] [ k ] + dp [ n ] [ k - money[ n ] ] ,可以看出当前方案数是全部来源于之前的方案数的,那么可以用滚动数组进行降维,得到**状态转移方程 dp [ j ] = dp [ j ]( 因为滚动数值仍然保留上一次的值,所以这个 dp [ j ] 相当于 dp [ n - 1 ] [ j ] ) + dp [ j - money [ i ] ] **


    /*************************************************************************
        > File Name: euler031.c
        > Author:    WArobot 
        > Blog:      http://www.cnblogs.com/WArobot/ 
        > Created Time: 2017年06月25日 星期日 15时10分45秒
     ************************************************************************/
    
    #include <stdio.h>
    #include <inttypes.h>
    
    #define MAX_N 201
    
    int32_t main() {
    	int32_t money[8] = { 1 , 2 , 5 , 10 , 20 , 50 , 100 , 200};
    	int32_t dp[ MAX_N ];
    
    	for(int32_t j = 0 ; j < MAX_N ; j++)	dp[j] = 1;	
    
    	for(int32_t i = 1 ; i < 8 ; i++){
    		for(int32_t j = money[i] ; j < MAX_N ; j++){
    			dp[j] += dp[ j - money[i] ];
    		}
    	}
    	printf("%d
    ",dp[200]);
    	return 0;
    }
  • 相关阅读:
    24种设计模式之适配器模式
    内存分配与回收策略
    java 吞吐量
    JVM运行数据区
    垃圾收集算法学习
    对象的回收
    未来一段时间学习方向
    多线程并发容器
    python基础数据类型--list列表
    Sublime Text 快捷键
  • 原文地址:https://www.cnblogs.com/WArobot/p/7076917.html
Copyright © 2011-2022 走看看