zoukankan      html  css  js  c++  java
  • 全局特征、局部特征 maxpool

    为什么要进行maxpool?

    max pooling之后,仅保留了最代表性的pixel

    浅层网络输出:

    深层网络输出:

    图1虽然人容易看,但特征不具有代表性,就是说不能通过一个特征就判定它是否是行人,之所以人看起来容易,是因为人做了后面深层网络做的东西。

    图2比较难以区分,因为它已经对某些结构进行了高层的抽象,很具有判别力,用简单的分类,比如阈值就可以做出最后的判定。

    首先粗粒度提取一些特征,然后细粒度提取一些特征, 最后提取一些高级特征,用这些高级特征去做分类等。

    全局特征是指图像的整体属性,常见的全局特征包括颜色特征、纹理特征和形状特征,比如强度直方图等。由于是像素级的低层可视特征,因此,全局特征具有良好的不变性、计算简单、表示直观等特点,但特征维数高

    局部特征则是从图像局部区域中抽取的特征,包括边缘、角点、线、曲线和特别属性的区域等。常见的局部特征包括角点类和区域类两大类描述方式。局部图像特征具有在图像中蕴含数量丰富 ,特征间相关度小,遮挡情况下不会因为部分特征的消失而影响其他特征的检测和匹配等特点。

    自己选择的路,跪着也要走完。朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其它人怎么样,我们也能够保持自己的本色走下去。
  • 相关阅读:
    爬取英雄联盟所有英雄皮肤
    Python xlrd模块读取Excel表中的数据
    H5的接口测试方式
    接口自动化
    DbUtils入门之QueryRunner
    常用注解
    修改Git下Git Bash开始键的默认起始路径
    SVN
    IDEA 2018 安装激活破解方法
    JVM原理(Java代码编译和执行的整个过程+JVM内存管理及垃圾回收机制)
  • 原文地址:https://www.cnblogs.com/WTSRUVF/p/15237984.html
Copyright © 2011-2022 走看看