zoukankan      html  css  js  c++  java
  • Barricade HDU

    Barricade

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2227    Accepted Submission(s): 655


    Problem Description
    The empire is under attack again. The general of empire is planning to defend his castle. The land can be seen as N towns and M roads, and each road has the same length and connects two towns. The town numbered 1 is where general's castle is located, and the town numbered N is where the enemies are staying. The general supposes that the enemies would choose a shortest path. He knows his army is not ready to fight and he needs more time. Consequently he decides to put some barricades on some roads to slow down his enemies. Now, he asks you to find a way to set these barricades to make sure the enemies would meet at least one of them. Moreover, the barricade on the i-th road requires wi units of wood. Because of lacking resources, you need to use as less wood as possible.
     
    Input
    The first line of input contains an integer t, then t test cases follow.
    For each test case, in the first line there are two integers N(N1000) and M(M10000).
    The i-the line of the next M lines describes the i-th edge with three integers u,v and w where 0w1000 denoting an edge between u and v of barricade cost w.
     
    Output
    For each test cases, output the minimum wood cost.
     
    Sample Input
    1 4 4 1 2 1 2 4 2 3 1 3 4 3 4
     
    Sample Output
    4
     
    Source
     
    注意审题
    题中说的是敌人会走最短的路 所以我们把所有的最短路都拿出来 跑一边最大流即可
    怎样把所有的最短路拿出来 跑一边最短路即可。。。因为跑完之后 起点和终点之间的所有的最短路 可以通过判断 d[e.v] == d[e.u] + 1 来进行建网络流的图
    注意建网络流图的方式 不然会t
    #include <iostream>
    #include <cstdio>
    #include <sstream>
    #include <cstring>
    #include <map>
    #include <cctype>
    #include <set>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <algorithm>
    #include <cmath>
    #define rap(i, a, n) for(int i=a; i<=n; i++)
    #define rep(i, a, n) for(int i=a; i<n; i++)
    #define lap(i, a, n) for(int i=n; i>=a; i--)
    #define lep(i, a, n) for(int i=n; i>a; i--)
    #define rd(a) scanf("%d", &a)
    #define rlld(a) scanf("%lld", &a)
    #define rc(a) scanf("%c", &a)
    #define rs(a) scanf("%s", a)
    #define MOD 2018
    #define LL long long
    #define ULL unsigned long long
    #define Pair pair<int, int>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define _  ios_base::sync_with_stdio(0),cin.tie(0)
    //freopen("1.txt", "r", stdin);
    using namespace std;
    const int maxn = 10010, INF = 0x7fffffff;
    int head[maxn], head2[maxn], dis[maxn], d[maxn], vis[maxn], cur[maxn];
    int cnt, cnt2;
    int n, m, s, t;
    
    struct node
    {
        int u, v, w, c, next;
    }Node[maxn<<1];
    
    void add_(int u, int v, int w, int c)
    {
        Node[cnt].u = u;
        Node[cnt].v = v;
        Node[cnt].w = w;
        Node[cnt].c = c;
        Node[cnt].next = head[u];
        head[u] = cnt++;
    }
    
    void add(int u, int v, int w, int c)
    {
        add_(u, v, w, c);
        add_(v, u, w, c);
    }
    
    void spfa()
    {
        for(int i=0; i<=n; i++) dis[i] = INF;
        mem(vis, 0);
        queue<int> Q;
        Q.push(s);
        vis[s] = 1;
        dis[s] = 0;
        while(!Q.empty())
        {
            int u = Q.front(); Q.pop();
            vis[u] = 0;
            for(int i=head[u]; i!=-1; i=Node[i].next)
            {
                node e = Node[i];
                if(dis[e.v] > dis[u] + e.w)
                {
                    dis[e.v] = dis[u] + e.w;
                    if(!vis[e.v])
                    {
                        vis[e.v] = 1;
                        Q.push(e.v);
                    }
                }
            }
        }
    }
    
    struct edge
    {
        int u, v, c, next;
    }Edge[maxn<<1];
    
    void add_edge(int u, int v, int c)
    {
        Edge[cnt2].u = u;
        Edge[cnt2].v = v;
        Edge[cnt2].c = c;
        Edge[cnt2].next = head2[u];
        head2[u] = cnt2++;
    }
    
    void add_Edge(int u, int v, int c)
    {
        add_edge(u, v, c);
        add_edge(v, u, 0);
    }
    
    bool bfs()
    {
        queue<int> Q;
        mem(d, 0);
        Q.push(s);
        d[s] = 1;
        while(!Q.empty())
        {
            int u = Q.front(); Q.pop();
            for(int i=head2[u]; i!=-1; i=Edge[i].next)
            {
                edge e = Edge[i];
                if(!d[e.v] && e.c > 0)
                {
                    d[e.v] = d[e.u] + 1;
                    Q.push(e.v);
                    if(e.v == t) return 1;
                }
            }
        }
        return d[t] != 0;
    }
    
    int dfs(int u, int cap)
    {
        int ret = 0, V;
        if(u == t || cap == 0)
            return cap;
        for(int &i=cur[u]; i!=-1; i=Edge[i].next)
        {
            edge e = Edge[i];
            if(d[e.v] == d[e.u] + 1 && e.c > 0)
            {
                int V = dfs(e.v, min(cap, e.c));
                Edge[i].c -= V;
                Edge[i^1].c += V;
                ret += V;
                cap -= V;
                if(cap == 0) break;
            }
        }
        if(cap > 0) d[u] = -1;
        return ret;
    }
    
    int dinic(int u)
    {
        int ans = 0;
        while(bfs())
        {
            memcpy(cur, head2, sizeof(head2));
            ans += dfs(u, INF);
        }
        return ans;
    }
    
    void build()
    {
        for(int i=1; i<=n; i++)
            for(int j=head[i]; j!=-1; j=Node[j].next)
            {
                node e = Node[j];
                if(dis[e.v] == dis[e.u] + 1)
                    add_Edge(e.u, e.v, e.c);
            }
    }
    
    int main()
    {
        int T;
        rd(T);
        while(T--)
        {
            mem(head, -1);
            mem(head2, -1);
            cnt = cnt2 = 0;
            rd(n); rd(m);
            rep(i, 0, m)
            {
                int u, v, c;
                scanf("%d%d%d", &u, &v, &c);
                add(u, v, 1, c);
            }
            s = 1, t = n;
            spfa();
            build();
            printf("%d
    ", dinic(s));
        }
        return 0;
    }
     
     
     
    自己选择的路,跪着也要走完。朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其它人怎么样,我们也能够保持自己的本色走下去。
  • 相关阅读:
    关于application/x-www-form-urlencoded编码
    socket 状态
    TCP/IP三次握手详解
    一步步优化JVM四:决定Java堆的大小以及内存占用
    编码问题
    git 应用
    父与子继承
    python try except
    python 编码问题
    requests 库使用方法
  • 原文地址:https://www.cnblogs.com/WTSRUVF/p/9513310.html
Copyright © 2011-2022 走看看